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Cyclic behaviour of a 6061 aluminium alloy: Coupling precipitation and
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Abstract—Multi-level cyclic loading is performed on an aluminium 6061 alloy. From an initial fully precipitated T6 state, various non-isothermal
heat treatments are performed, leading to various precipitation states. This paper focuses on the effect of precipitates on yield stress, and on kinematic
and isotropic hardening. In parallel, the elastoplastic behaviour is modelled coupling a recently developed multi-class precipitation model to an adap-
tation of the classical Kocks–Mecking–Estrin formalism. In addition to the classical isotropic effect of solid solution, precipitates and dislocation
forests, the proposed model takes into account the kinematic contribution of grain boundaries as well as precipitates, thus providing a new physical
meaning to the Armstrong–Frederick law. The resulting cyclic stress–strain curves compare well with the experimental ones for all treatments and
strain levels.
� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding of the microstructural evolutions and
associated deformation mechanisms in age-hardening alu-
minium alloys has greatly progressed in the last decade
(see for example the recent review of Simar et al. [1]). In
their pioneering contribution, Myhr et al. [2,3] coupled a
Kampmann–Wagner numerical (KWN) precipitation
model with a dislocation strengthening model in 6XXX
alloys after non-isothermal heat treatments, typical of that
used for welding. The aim of this kind of studies is generally
to predict yield stress, hardness [2,4,5] and, sometimes,
strain hardening during a tensile test [1,6]. Nevertheless,
despite this progress, the literature is more sparse on the
cyclic behaviour of 6XXX alloys, for which accurate consti-
tutive laws are needed for several applications such as fati-
gue or welding (especially for multi-pass processes).

Beyond practical applications, the use of cyclic behav-
iour enables some limitations attached with monotonous
testing to be overcome. For example, kinematic hardening
can be erroneously attributed to isotropic mechanisms,
based on monotonous loading. The use of cyclic loading
is then fundamental to separate the kinematic and isotropic
http://dx.doi.org/10.1016/j.actamat.2014.09.034
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contributions and thus better understand the hardening
behaviour of age-hardening alloys.

In the literature, several authors have studied the impact
of microstructural evolutions on the kinematic hardening
of age-hardening aluminium alloys. Proudhon et al. [7]
investigated the Bauschinger effect induced by isothermal
treatments and proposed some elements of kinematic hard-
ening modelling inspired by the pioneer contributions of
Ashby [8], Brown and Stobbs [9]. Later, several teams took
over these early studies: e.g. Fribourg et al. [10] on 7XXX
series, and Teixeira et al. [11] and Han et al. [12] for Al–
Cu–Sn alloys. However, these papers share a common
drawback: the entire kinematic hardening is attributed to
the precipitates, thus neglecting the potential impact of
grain boundaries (as studied by Sinclair et al. [13]).

In this study a cyclic elastoplastic model is coupled to a
recently developed precipitation model [14]. This coupling
aims at understanding and describing the variety of cyclic
behaviour that can be encountered in the heat-affected zone
of a 6061-T6 weld joint. The modelling approach is based on:
� a robust precipitation model (KWN-type) detailed in

previous papers [15,16] that has been recently
adapted for rod-shaped precipitates and validated
by transmission electron Microscopy (TEM) as well
as small-angle neutron scattering (SANS) [14],

� an isotropic hardening model based on the Kocks–
Mecking–Estrin (KME) formalism [17–19] embel-
lished by the consideration of the entire precipitate
reserved.
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Nomenclature

b Burgers vector
CAF constant of the Armstrong–Frederick model
D grain size
E Young’s modulus
f yield surface
f V volume fraction of the b00 – b0 hardening

phase
f bp

V volume fraction of bypassed precipitates
ic index of the class corresponding to the transi-

tion radius
k strength constant for precipitate shearing

calculation
k1 multiplication constant in the KME model
k0

2; k
p
2 dynamic recovery coefficients in the KME

model
kj solid-solution strengthening constant for ele-

ment “j”

Lbp mean distance between bypassed precipitates
li length of the precipitate rod in the class “i”

lbp mean length of bypassed precipitates
M Taylor factor
Ni precipitate density in the class “i”

nG number of dislocation stored at grain
boundaries

n�G maximum number of dislocation stored at
grain boundaries

nppt number of dislocations stored around
precipitates

n�ppt maximum number of dislocations stored
around precipitates

R total isotropic hardening coefficient
R mean radius of the precipitate distribution
Rbp mean radius of the bypassed distribution
rc transition radius between sheared and

bypassed precipitates

Sijkl component “ijkl” of the Eshelby tensor S

X G kinematic stress due to grain boundaries
X ppt kinematic stress due to Orowan storage
a constant related to the forest hardening
b constant related to dislocation line tension
cAF constant of the Armstrong–Frederick model
Drbp bypassed precipitate contribution to strength
Drp precipitate contribution to strength
Drsh sheared precipitate contribution to strength
DrSS solid-solution contribution to strength
� uniaxial total strain
�e elastic part of the strain
�p uniaxial plastic strain
��p unrelaxed plastic strain
j ratio of the length of the precipitate by its

diameter
_k plastic multiplier
kG mean spacing between slip lines at grain

boundaries
l Shear modulus of the matrix
l� shear modulus of the precipitates
m Poisson coefficient
n effective stress (n ¼ r� X G � X ppt)
X Brown and Stobbs accommodation factor
u efficiency parameter for Orowan storage

(2 ½0; 1�)
q dislocation density statistically stored
q0 initial dislocation density
qppt dislocation density stored in form of Orowan

loops
r0 pure aluminium yield stress
ry

0:02% yield stress for 0.02% of plastic strain
v constant in X ppt expression
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distribution, solid-solution strengthening (as pre-
sented in Ref. [14]) as well as a precipitate-induced
recovery mechanism [6],

� a kinematic hardening model based on grain and
precipitate contributions, adapted from the work of
Sinclair et al. [13], Brown and Stobbs [9] and
Proudhon et al. [7] for cyclic hardening.

This approach will be validated by uniaxial multilevel
cyclic loadings performed on specimens that were subjected
beforehand to non-isothermal heat treatments, representa-
tive of welding thermal histories in a heat-affected zone as
in Ref. [14]. The slip irreversibility mentioned in Ref. [12]
is assumed negligible in this work, which simplifies the
treatment of isotropic and kinematic contributions to the
hardening. We indeed believe here that a clear description
of slip irreversibility should come after a proper description
of isotropic and kinematic effects, on which this paper is
focused.
2. Materials and experimental methods

2.1. Materials and heat treatments

Uniaxial specimens were extracted from a 6061-T6
rolled plate of 50 mm thickness. The alloy composition is
given in Table 1. In order to mimic the thermal cycles
occurring in a heat-affected zone, two kinds of controlled
heating cycles were performed on a home-made Joule ther-
momechanical simulator presented in Ref. [20] and
improved for this study. Each cycle was composed of a
heating stage (at constant heating rate) up to a maximum
temperature, followed by natural cooling, as in the welding
process (cooling rate between 30 and 50 �C s�1 depending
on treatment). The specimen dilatation and contraction
was free during these thermal cycles. In order to study
the effect of both heating rate and maximal temperature,
two types of treatments will be presented as detailed in
Ref. [14]:



Table 1. Chemical composition of studied AA6061 (main elements).

Mg Si Cu Fe Mn Cr Zn

wt.% 1.02 0.75 0.25 0.45 0.06 0.06 0.04
at.% 1.14 0.72 0.11 0.22 0.03 0.03 0.02
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� “Maximum temperature” (MT) treatments: at a fixed
heating rate close to 15 �C s�1, maximum temperatures
from 100 to 560 �C were reached;

� “Heating rate” (HR) treatments: at a fixed maximum
temperature (400 �C), heating rates from 0.5 to
180 �C s�1 were experienced.
Temperatures were measured with a Micro-Epsilon CT

laser pyrometer (9 ms response time, 8–14 lm wavelength)
focused on the samples, which were coated with a thin
graphite film of known emissivity. This device was linked
to a MTS teststarS IIm controller of the tensile machine
(response time 10 ms) and used to obtain accurate tempera-
ture measurements and improve the thermal regulation pre-
sented in Ref. [20] (no overshooting with an accuracy of
±2 �C). For MT treatments, the temperatures were
100; 300; 400; 450; 500 and 560 �C (experimental heating rate
was 14:6 �C s�1 ±0.1). HR treatments were performed with
heating rates of 0:48; 14:7; 69:5 and 181 �C s�1 for a maxi-
mum temperature of 400 �C. It is assumed here that these
fast treatments do not impact the grain structure and size.

2.2. Cyclic loading and specimen design

The Joule device was attached to a MTS-809 tensile
machine (100 kN load cell) in order to load the samples
directly after the heat treatment. This avoided natural aging
[21] for samples heated to 500–560 �C (where all the hard-
ening b00 – b0 precipitates were dissolved [14]) and air
quenched.

In order to avoid buckling of the specimens and to
achieve fast heating rates, we chose to limit the strain to less
than 1% (cf. Fig. 1) with a reduced diameter (7.05 mm). The
samples have been designed using analytical estimates as
well as electrothermal finite-element method (FEM) simu-
lations performed with the commercial software Abaqus.
The length has been chosen as a compromise between the
risk of buckling for 1% strain and temperature gradient.
Thanks to a spacing modification on a biaxial MTS exten-
Fig. 1. From the T6 initial state, thermomechanical treatments are
performed. First, non-isothermal heat treatments characterized by a
heating rate (HR) and a maximum temperature (MT) are performed.
Then, three sets of 10 cycles with increasing strain (0.3, 0.6 and 0.9%)
are performed at room temperature.
someter as in Ref. [22] (cf. Fig. 2), the gage length was reduced
to 15 mm. The temperature gradient in this area has been
checked by a thermographic camera FLIR SC7750L
8–9:4 lm (cf. Fig. 2). A variation of 6% at 7.5 mm from the
center was obtained for the highest temperature.

Multilevel strain cycles have been performed, consisting
of three sets of 10 cycles with increasing amplitude (cf.
Fig. 1). Indeed, isotropic and kinematic hardening contri-
butions are known to depend on the plastic strain ampli-
tude �p (uniaxial here) but also on the cumulative plastic
strain p such as _p ¼ j _�pj for a large range of materials
[23]. Moreover, as we will see later, this type of test allows
an easy estimation of both hardening components sepa-
rately. For the T6-treated sample, MT treatments with
MT ¼ 100 �C and MT ¼ 300 �C specimens, the stress was
rapidly stabilized, so that the tests were shortened.

2.3. Transmission electron microscopy

TEM experiments were conducted on a 200CX micro-
scope operating at 200 kV, belonging to the Centre Lyon-
nais de Microscopie (CLYM) located at INSA Lyon
(France). The samples used for TEM were thinned using
standard electropolishing technique. Images were treated
with ImageJ software [24]: the precipitate mean radius
was estimated by averaging over more than 50 precipitates.
3. Experimental results

3.1. Microstructural characterization

The initial T6 state exhibited equiaxed grain structure,
with grain size of approximatively 200 lm. These coarse
and equiaxed grains are clearly due to full recrystallization
of the rolled structure during the solutionizing treatment
performed before the T6 treatment.

From this T6 state, the non-isothermal treatments have
been chosen as in Bardel et al. [14] where a similar alloy was
studied. An overview of the TEM experiments is presented
in Fig. 3. All TEM observations were performed using a
[001] Al zone axis.

In Fig. 3a, a sample in the T6 state was analyzed. As
expected after such a treatment, very fine precipitates corre-
sponding to the b00 phase were detected. These precipitates
were found to be uniformly distributed in the aluminium
matrix and to have an average radius of 1.6 nm.

After the MT treatment with MT ¼ 450 �C, b0-rod-shaped
precipitates were observed. They were found to be aligned
along the three possible h100i directions of the aluminium
matrix, as was reported in the literature for these precipitates
[25]. In Fig. 3b, one family of b0-precipitates is viewed end-on.
The mean radius of these precipitates is 4.6 nm.

After the MT treatment with MT ¼ 500 �C, no
b0-precipitates could be detected. During this treatment,
the b0-precipitates were replaced by large incoherent
precipitates associated with the equilibrium b-phase. These



Fig. 4. Cyclic stress–strain curve for the MT treatment with
MT ¼ 560 �C. The evolution of the maximum stress amplitude shows
a strong isotropic hardening.

Fig. 2. Images of (a) the thermomechanical device during a temperature gradient measurement by infrared thermography and (b) the extensometer
with modified alumine rods.

Fig. 3. TEM pictures for (a) T6 state, (b) sample heated to
MT ¼ 450 �C and (c) MT ¼ 500 �C. These observations validate the
b0 solvus temperature of �465 �C [26] used (as in Ref. [14]) for the
simulation of precipitation.
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precipitates do not contribute to the hardening and prevent
nucleation of less stable b00 – b0 phases.
It should be noted that these results are in agreement
with the time–temperature–transformation diagram of the
6061 alloy determined by Massardier et al. [26]. Finally,
these observations agree with the b0 solvus temperature of
465 �C used (as in Ref. [14]) for the simulation of precipita-
tion (see Section 4).

3.2. Elastoplastic behaviour

As shown in Fig. 1, the strain cycles were applied after
non-isothermal heat treatments. As an example, a cyclic
stress–strain curve for the MT treatment with
MT ¼ 560 �C is shown in Fig. 4. The evolution of the max-
imum stress (reached during a cycle) shows a strong isotro-
pic hardening for this sample.

Fig. 5 presents the evolution of the maximum stress with
the cycle number. During these experiments, a wide variety



Fig. 6. Quantification of the Bauschinger effect (offset 0.02 %—
horizontal blue segment) for the initial T6 state (upper figure) and
when all hardening precipitates are dissolved (after a treatment
characterized by MT ¼ 560 �C and HR ¼ 15� C s�1) (lower figure).
(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Evolution of the maximum stress amplitude as function of the
cycle number at T6 state and after thermal treatments characterized by
various maximum temperatures (MT) and a fixed heating rate
(HR ¼ 15� C s�1). Every 10 cycles (vertical line), the strain amplitude
is increased. The first 10 cycles are purely elastic at T6 state and after
MT ¼ 100 �C and MT ¼ 300 �C treatments. The increase of the
maximum stress amplitude characterizes the isotropic hardening.
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of mechanical behaviour was obtained for the different heat
treatments. The higher the maximum temperature, the
lower the initial yield strength (ry

0:02%).
The quantification of kinematic hardening requires the

definition of a clear criterion to separate elastic from plastic
domains. Kinematic hardening indeed depends on the plas-
tic strain offset that is chosen. Therefore, in what follows,
the offset of 0.02% is chosen. A larger offset would miss a
large part of the hardening and a smaller offset would reach
the detection limit of the extensometer.

Examples of reverse cycles are presented in Fig. 6 for the
T6 state and a heat treatment characterized by
MT ¼ 560 �C and HR ¼ 15 �C s�1 (no precipitate–solid
solution). The T6 state obviously presents a larger Bausch-
inger effect, certainly due to the massive presence of precip-
itates. Note that, even for the precipitate-free state, the
amplitude of the back-stress is not zero, which is in contra-
diction with what is assumed in several studies [12,10,11].
This Bauschinger effect has been observed for all cycles
and thermal treatments.

We can see in Fig. 5 that the lower the precipitate den-
sity (increasing maximum temperature), the higher the cyc-
lic hardening. Indeed, the T6 state as well as after thermal
treatments with MT ¼ 100 �C and MT ¼ 300 �C exhibits a
perfect kinematic behaviour (negligible isotropic harden-
ing). The isotropic hardening component increases when
the maximum temperature further increases, leading to a
coarser precipitation state.

Thus, these cyclic curves highlight the strong effect of the
precipitation state on: (i) the initial yield stress, (ii) the kine-
matic hardening component that increases with the density
of precipitates and (iii) the isotropic hardening that
increases when the precipitates dissolve and/or coarsen.
This wide range of heat treatments will facilitate the mod-
elling by providing separate information on both isotropic
and kinematic hardening from the homogenized state to the
fine T6 microstructure.
4. Modelling

4.1. Precipitate size distribution and volume fraction

The distribution of precipitates has been simulated for
the MT and HR heat treatments using a recent implemen-
tation of a KWN model for b00 – b0 rods detailed in Bardel
et al. [14]. In short, classical nucleation and growth theories
(CNGTs) have been adapted to the precipitation of rod-
shaped particles (number density N, tip radius rp and length
l), leading to:

dN
dt
¼ N 0Zb� exp �DG�

kbT

� �
1� exp � t

s

� �h i
ð1Þ

dl
dt
¼ 1:5

DMg

2rp

X Mg � X i
Mg

aX p
Mg � X i

Mg

¼ 1:5
DSi

2rp

X Si � X i
Si

aX p
Si � X i

Si

ð2Þ

where N 0 is the nucleation site density, b� is the condensa-
tion rate and Z is the Zeldovich factor, DG� is the nucle-
ation barrier, s is the incubation time, X Mg and X Si are
the matrix solute fraction; X i

Mg and X i
Si are the interfacial

equilibrium solute fraction, X p
Mg and X p

Si are the precipitate
solute fraction, and a is the ratio between matrix and
precipitate mean atomic volume vat a ¼ vM

at vP
at

�� �
. All these

parameters have similar values as in Ref. [14].



Fig. 7. Evolution of mean precipitate radius for T6 state (shown at
MT ¼ 25 �C) and thermal treatments with various maximum temper-
atures (MT). Small-angle neutron scattering data from Ref. [14] (in
which a similar alloy was studied) are also reported for comparison.
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The solubility product modified by the Gibbs–Thomson
effect reads:

X i
Mg

xX i
Si

y ¼ Ks � exp
r0

r

� �
ð3Þ

where r0 is the capillarity length and Ks is the solubility
product (expressed in atomic fraction and T in Kelvin):

Log10Ks ¼ �
A
T
þ B ð4Þ

Eqs. (1)–(3) were then integrated in a precipitation multi-
class KWN-type model [27,15,16]. From a precipitate-free
state (supersaturated solid solution), a T6 treatment (8 h
at 175�C) has been applied. The calibration has been car-
ried out by (i) adjusting the solubility product for the b00

– b0 precipitates thanks to the dissolution temperature
(738 K from Ref. [26]) and the precipitate volume fraction
at the T6 state (1.6% as in Ref. [14]); then, (ii) fitting the
interfacial energy to obtain the mean radius measured by
TEM in the T6 state (cf. Fig. 3). For this particular alloy
(cf. Table 1), A ¼ 20945 K, B ¼ �28:7 and
c ¼ 0:085 J m�2 are obtained.1 Fig. 7 shows that the pro-
posed precipitation model gives an accurate description of
precipitate mean radius for various treatments with maxi-
mum temperatures ranging from 200 to 560 �C.

4.2. Elastoplastic framework

In addition to the yield stress of pure aluminium r0, sev-
eral contribution have been considered: an isotropic com-
ponent R due to the interaction between dislocations and
defects interactions and two kinematic contributions: X G

due to the pile-up of dislocations on grain boundaries
and X ppt due to the pile-up of dislocations around
precipitates.

These contributions are introduced into a unified elasto-
plastic framework. For the sake of simplicity and according
to the experiments, this paper is written in a unidirectional
1 Note that these values are slightly different from those in Ref. [14]
since the alloy composition in also different.
formalism. The additive partition of deformations (small
strains) is assumed and the stress is expressed by Hooke’s
law of linear elasticity:

r ¼ E �� �p

� �
ð5Þ

where � and �p are the total and plastic strains, and E is the
Young’s modulus. A yield function f delimiting the elastic
domain is introduced:

f ðr;X G;X ppt;RÞ ¼ jr� X G � X pptj � r0 þ Rð Þ ð6Þ
In the elastic domain f < 0, and during plastic flow

f ¼ 0. The normality rule [23] provides the rate and direc-
tion of the plastic flow:

_�p ¼ _k
@f
@r
¼ _k� Sign r� X G � X ppt

� �
¼ _k� Sign nð Þ ð7Þ

where n ¼ r� X G � X ppt is the effective stress and _k (main
unknown of the plastic problem) is the plastic multiplier,
also defined as the norm of the plastic strain rate and then
the cumulative plastic strain rate _k ¼ j _�pj ¼ _p. It is deter-
mined by the consistency condition f ¼ _f ¼ 0 during the
flow [23], combined with Eqs. (5)–(7).

4.3. Initial yield stress

A microstructure-based yield stress model is used in
this work. It takes the contribution of the whole precipitate
size distribution into account, as well as the non-spherical
shape of precipitates, their specific spatial distribution
as well as competing shear and bypass strengthening
mechanisms.

Indeed the yield stress of an aluminium alloy can be seen
as the consequence of: (i) the Peierls friction and grain
boundaries contributions included in r0, which is the yield
stress of pure aluminium (�10 MPa for a weak Hall–Petch
effect) [2,6]; (ii) the solid-solution (SS) strengthening

DrSS ¼ kj:C
2=3
j [28] where the concentrations Cj are pro-

vided by the precipitation model thanks to a balance
between the initial content and precipitate volume fraction
[14]; (iii) the forest term Drd that is usually negligible for an
initial (undeformed) dislocation density [1,2,6]. In Starink
et al.’s work [29] this assumption is validated for cold-rolled
Al alloys and the contribution is estimated at 1.3 MPa; and
(iv) the precipitate hardening effect Drp due to the distribu-
tion of precipitates.

These four contributions are homogenized in the slip
planes thanks to a conventional power law, which depends
on the difference in size and strength of obstacles [30]. This
provides the macroscopic yield stress:

ry ¼ r0 þ R ð8Þ
where R ¼ DrSS þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2

p þ Dr2
d

q
is the total isotropic

contribution.
To calibrate this contribution on the experimental

results the forest hardening is calculated as:

Drd ¼ Malb
ffiffiffi
q
p ð9Þ

where M is the Taylor factor, a is a constant (a ¼ 0:27
according to Ref. [31]), l is the shear modulus of the alu-
minium, b is the Burgers vector and q is the dislocation den-
sity (initial value q0 ¼ 1012 m�2 as in Ref. [10]).

A triangular network of precipitate obstacles (aligned
along the ½100� direction) is present in the f111g slip plane
[32]. In a previous paper [14], two mechanisms were



Table 2. Parameters of the yield stress model.

Parameter Value Sources

b [m] 2:86� 10�10 [35]
M 2 [31,1,5,6]
b 0.25 [9]
r0 [MPa] �10 [31]
E [GPa] 71.5 This work from T6
m �0.33 [36]
rc [nm] 1.6 This work by TEM
kMg [MPa=wt%2=3] 23 Precipitate-free yield stress
kSi [MPa=wt%2=3] 23 Precipitate-free yield stress

(a)

(b)

Fig. 8. Representation of the yield stress evolution given by the model
(in red) for (a) the maximum temperature and (b) the heating rate
studied.
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introduced: shear ðshÞ and bypass ðbpÞ according to the pre-
cipitate size. A quadratic homogenization law provides
good results for various volume fractions and strengths of
obstacles as explained in a dislocations dynamic study

[33]. Then, we choose: Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drsh2 þ Drbp2

p
[14,34], with:

Drsh ¼ MðklÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i<ic

liN i

4
ffiffi
3
p

blb

r P
i<ic

N iriP
i<ic

Ni

� �3=2

Drbp ¼
ffiffiffi
2
p

Mblb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i>ic

liN i

r
8>>><
>>>:

ð10Þ

In these expressions k ¼ 2bb=rc is deduced from the
transition radius, which is supposed to be the mean radius
of the T6 state [6,34]. The line tension constant b is chosen
equal to 0.25 according to Brown et al. [9] and a lower
bound of the mean Taylor factor is chosen M ¼ 2 as in
Refs. [1,31]. The distribution of precipitates is characterized
by the radius ri, the length li and the number density Ni of
each class and the index ic is the index of the shear/bypass
transition radius.

The strengthening constants kj of DrSS (for Mg and Si
solutes) are fitted (cf. Table 2), as in Refs. [31,10], to reach
the experimental yield stress when precipitates are dissolved
(MT ¼ 560 �C in Fig. 8).

Fig. 8 presents the resulting total yield strength for all MT
and HR treatments, as well as for the T6 state. The yield
strength resulting from the precipitation model coupled with
the hardening model fits remarkably well the experimental
values measured at the beginning of the first stress–strain
cycle for all non-isothermal treatments. Note that this agree-
ment, combined with the good predictions of the precipita-
tion model (Fig. 7) gives us some confidence for the
hardening model that will be introduced in the next section.

4.4. Isotropic hardening: the forest contribution

The classical Kocks–Meching–Estrin (KME) [19,18] dis-
location evolution provides a simple framework to describe
isotropic hardening due to dislocation interactions. It is
based on a constitutive equation describing the evolution
of the dislocation density q with strain:

@q
@p
¼ M k1

ffiffiffi
q
p � k2q

� �
ð11Þ

where k1 is related to the athermal work hardening limit
and k2 describes dynamic recovery. In parallel, a hardening
equation (Eq. (9)) relates the dislocation density to the iso-
tropic hardening.

This versatile framework has been improved by many
authors to account for more and more complex systems
and/or phenomena. Some important contributions will be
discussed in the next paragraphs.
4.4.1. Contribution of grain boundary dislocations
Sinclair et al. [13] proposed an adaptation of the KME

formalism in order to account for the contribution of grain
boundary dislocations. They added an additional term in
Eq. (11) to describe the efficiency of dislocations stored at
the boundary with respect to forest hardening. However,
as this term is inversely proportional to mean grain diameter
D, this contribution will be assumed negligible in the follow-
ing since 1=Dð� 104 m�1Þ 	 ffiffiffi

q
p ð� 106 m�1Þ in our case.

4.4.2. Contribution of Orowan loops
First introduced by Estrin [18] and later improved by

Simar et al. [6], the contribution of Orowan loops to harden-
ing was expressed as an additional term u=ðbLbpÞ in Eq. (11),
where u is an efficiency term ranging from 0 to 1 and the dis-
tance Lbp is the mean distance between bypassed precipitates.
This version is also used by Fribourg et al. [10] but in a dif-
ferent form where the dislocation density around precipi-
tates is added to q in Drd . The adaptation of Fribourg
et al. for cyclic hardening in the presence of a distribution
of precipitates provides qppt ¼ 2p/ nppt



 

NbpRbp, where Rbp

and N bp are the mean radius and the number density of
bypassed precipitates.

However, the effect of the dislocation density stored as
Orowan loops qppt is weak (q
 qppt in all simulated cases).
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Moreover, the number of Orowan loops nppt stored around
bypassed precipitates oscillates around zero when the sign
of the plastic strain changes. Thus, the isotropic contribu-
tion proportional to

ffiffiffiffiffiffiffiqppt
p

oscillates too. Such isotropic
behaviour has not been observed experimentally and leads
to the hypothesis that this isotropic contribution is a very
small dynamic phenomenon and does not have to be taken
into account.

4.4.3. Effect of precipitates on dynamic recovery constant k2

In addition to the storage of Orowan loops, several
authors [6,18] have noted that the presence of precipitates
can modify the dynamic recovery constant k2. Simar et al.
[6] stated that the presence of Orowan loops increases the
stress field around precipitates, favouring cross-slip, thus
leading to an amplification of dynamic recovery. Using a
Poisson process, Simar et al. [6] have shown that the prob-
ability of dynamic recovery without Orowan interference is
Pð0Þ ¼ expð�ldu=LbpÞ with ld ¼ 1=

ffiffiffi
q
p

:

k2 ¼ k0
2 � exp �uld

Lbp

� �
þ kp

2 � 1� exp �uld

Lbp

� �� �
ð12Þ

where Lbp is the mean distance between bypassed precipi-
tates, which is computed from a given precipitate distribu-
tion by:

Lbp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P
i>ic

liN i

s
ð13Þ

with li and Ni are the length and the density of precipitates
for the class “i” in the simulated distribution [14].

4.5. Grain boundaries contribution to kinematic hardening

From the microstructural analysis and in agreement
with the literature, samples submitted to the MT treatment
with MT ¼ 560 �C exhibit a microstructure where all b00 – b0

strengthening precipitates have been dissolved. However, as
can be seen on the stress–strain cyclic curve of Fig. 4 and
also in Fig. 5, there is obviously a kinematic component
in the hardening of such sample. This kinematic hardening
is assumed here to be due to grain boundaries, as described
by Sinclair et al. [13] and also by Morrison et al. [37], even
for grains as large as 300 lm. Indeed, the stress field devel-
oped by dislocations stopped at the grain boundary
impedes the progress of similar dislocations and causes a
backstress X G. In the simple case where screening effects
are negligible (small strain, i.e. no dislocation of opposite
sign arriving in the same area on other slip systems or in
adjacent grains), the backstress can be written as [13]:

X G ¼ M
2blb

D
nG ð14Þ

where D is the mean grain size (close to 200 lm here) and
nG is the average number of dislocations (of a given sign)
blocked at the grain boundary on a given slip band. Note
that nG and X G are considered here as signed variables: neg-
ative values mean a backstress in compression (when
r < 0). Following Sinclair et al. [13], the evolution of nG

with the plastic strain �p can be written as:

@nG

@�p
¼ M

kG

b
1� nG

n�G � Sign _�p

� �
" #

ð15Þ
where kG is the mean distance between slip lines in a shear
band and the second term accounts for the finite number of
sites available for dislocations at the boundary.

For this application, the contribution of Sinclair et al.
[13] has been adapted to cyclic loading: the direction of
loading has to be accounted for. Indeed, nG converges to
a positive n�G during forward loading, whereas it converges
to a negative value during reverse loading. The term
n�G � Sign _�p

� �
in Eq. (15) accounts for this inversion of

the backstress.

4.6. Precipitation effect on work hardening

Precipitation has an effect on kinematic hardening as
shown, for example, by the experimental curves of Fig. 6.
This component can be assessed from the precursor work
of Ashby [8], and Brown and Stobbs [9]. Thanks to the
Eshelby formalism [38,39], the unrelaxed plastic strain
c�ppt ¼ npptb=2r due to the storage of nppt Orowan loops

around spherical precipitates (of radius r) can be linked
to the macroscopic kinematic stress X ppt (the Orowan stor-
age is a polarized mechanism [10]). Here, the geometry of
precipitates (oriented in the h100i direction) is assumed
ellipsoidal and then the unrelaxed plastic strain is

c�ppt ¼ nppt � b�
ffiffiffi
3
p

=lbp, where lbp is the mean length of

bypassed precipitates.
For a precipitate with the same shear modulus l as the

matrix [9], as detailed in the Appendix, the macroscopic
kinematic stress X ppt due to a volume fraction f bp

V of
bypassed precipitates is:

X ppt ¼ Mlf bp
v Xc�ppt ¼ M2lf bp

v X� ��ppt ð16Þ

where X ¼ ð7� 5mÞ=15ð1� mÞ [9,40] (for spherical precipi-
tates) is the accommodation factor. In the case of ellipsoids
(a1 ¼ ja2 > a2 ¼ a3), X is deduced from Mura’s contribu-
tion [40]:

X ¼ 1� 2S3131 ¼ 2� 2mð Þ�1 j2 � 1
� ��5=2

� acoshðjÞ j3ð1þ mÞ þ jð2� mÞ
� �


þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 1
p

j4ð1� mÞ þ j2ðm� 4Þ
� �i

ð17Þ

This expression is quite different from the one of Proud-
hon et al. [7] and Fribourg et al. [10], where X ¼ 1 and the
Young’s modulus is used rather than the shear modulus.
Moreover, when the shear modulus l� of the precipitates
is different from the one of the matrix (available data for
the closest precipitate, Mg2Si, yields l� ¼ 46:4 GPa [4]),
the Eshelby inhomogeneity problem leads to [40]:

X ppt ¼ M � l� X� l� � b�
ffiffiffi
3
p

l� � X l� � lð Þ
f bp

v

lbp
unppt ¼ v

f bp
v

lbp
nppt

ð18Þ
where v is a constant and u 2 ½0; 1� has been introduced by
Simar et al. [6] to adjust the efficiency of the Orowan loops.

Next, in order to quantify the evolution of kinematic
hardening in Eq. (18), the number of Orowan loops nppt

stored around precipitates must be expressed as a function
of plastic strain. In Proudhon et al. [7], a reasoning close to
the one of Sinclair et al. [13] led to an equation similar to
Eq. (15) with a maximum number of Orowan loops n�ppt.
Adapting this expression to cyclic tests, the evolution of
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the number of dislocations stored around precipitates can
be written as:

@nppt

@�p
¼ M

lbp

b
ffiffiffi
3
p 1� nppt

n�ppt � Sign _�p

� �
" #

ð19Þ

Precipitation affects the kinematic hardening but also
the isotropic contribution as highlighted in Fig. 5. These
effects are included in Eqs. (8) and (12). We recall here that
the effect of stored dislocations (as Orowan loops) on forest
hardening (qppt) has been neglected (see justification in pre-
vious section).
5. Numerical integration and calibration

5.1. Numerical integration

The material behavior is first integrated using an elastic
computation where the input is the experimental strain.
This step is acceptable if the yield surface is f 6 0, other-
wise the integration of the plastic problem is performed
under the consistency condition. The implementation has
been introduced in the PreciSo precipitation software
[15,34] to benefit from a full coupling between microstruc-
tural and mechanical evolutions.

In order to facilitate the resolution, an explicit time inte-
gration form is used thanks to an adaptive RK45 algorithm
(implemented as in Ref. [41]) that solves the following dif-
ferential system:

_r ¼ E _�� _k� Sign nð Þ
h i

_q ¼ M k1
ffiffiffi
q
p � k2q


 �
_k

_nG ¼ MkG
b Sign nð Þ � nG

n�G

h i
_k

_X G ¼ 2M2kGbl
D Sign nð Þ � nG

n�G

h i
_k

_nppt ¼ Mlbp

b
ffiffi
3
p Sign nð Þ � nppt

n�ppt

h i
_k

_X ppt ¼ v Mf bp
v

b
ffiffi
3
p Sign nð Þ � nppt

n�ppt

h i
_k

_Drd ¼ Malb
2
ffiffi
q
p _q

_R ¼ Drd
_Drdffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dr2
pþDr2

d

p

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð20Þ

This system is solved by recalling that _�p � Sign nð Þ ¼ _k
and @ nppt



 

=@t ¼ _nppt � Sign nppt

� �
and under the hypothesis

that the dynamic precipitation and the grain size evolution

due to strain can be neglected ( _D; _DrSS; _Drp; _Nbp. . . equal to
zero). Note that more complex forms can be found in
Ref. [34].
Table 3. Parameters used for the plastic modeling.

Parameter Value Sources

k1 [m�1] 87� 106 Fitted on MT ¼ 560 �C
k0

2 3.5 Fitted on MT ¼ 560 �C
kp

2 0.25 Fitted on isotropic evolution
D [lm] 200 Metallography
kG [lm] 25.8 Fitted on MT ¼ 560 �C
n�G 1100 Fitted on MT ¼ 560 �C
E [GPa] 71.5 Fitted on T6
m 0.33 [36]
l� [GPa] 46.4 Mg2Si (closest precipitate) [4]
a 0.27 [31]
q0 [m=m3] 1� 1012 [10]
u 1 [18]
n�ppt !1 No saturation
The main unknown of this problem is the plastic multi-
plier _k, which is deduced from the consistency condition
f ¼ _f ¼ 0 [23] and updated at each time step:

_k ¼ Sign nð ÞE _�

E þ _R
_k
þ Sign nð Þ _X G

_k
þ _X ppt

_k

h i� � ð21Þ
5.2. Calibration

There are several parameters in the differential system of
Eqs. (20) (all parameters are recalled in Table 3). Experimen-
tal cyclic tests allow a simple identification in three stages:

5.2.1. Yield stress
Most of the parameters (b;M ; b; r0;E; m; rc; kMg and kSi)

have been identified on the yield stress evolution as in
Ref. [14] (cf. Fig. 8 and Table 2). Note that the line tension
constant b ¼ 0:25 has been chosen as in Ref. [9]. The same
order of magnitude can be found in a recent dislocation
dynamic (DD) study [42] and in Brown et al. [9]. This value
is assumed constant here although some fluctuations may
exist with the evolution of dislocation characteristics [42].
Finally, the mean Taylor factor has been chosen as
M ¼ 2 as in Refs. [31,1]. This value might seem quite far
from what is conventionally given by the Taylor’s model
(�3) but this model assumes random texture and a constant
resolved shear stress for all the slip systems. These condi-
tions are probably not respected here, especially if precipi-
tates induce cross-slip. Note that this value can also be
affected by the type of mixture law that is used (see DD
simulations in Ref. [33]).

5.2.2. Precipitate-free state
The constants k1; k

0
2; kG and n�G have been determined (cf.

Table 2) from the precipitate-free state after the
MT ¼ 560 �C treatment. Indeed, for a constant strain ampli-
tude, each increment of stress and associated saturation can
be correlated to the isotropic hardening (k1 and k0

2).
Kinematic hardening is generally attributed to precipi-

tates in age-hardening aluminium alloys. However, it was
necessary to introduce a grain boundary contribution X G

in order to reproduce the Bauschinger effect for the precip-
itate-free MT ¼ 560 �C sample. The constants n�G and kG

have been fitted so that the Bauschinger effect could be
Fig. 9. Comparison between experimental and modelled stress–strain
curves after the MT treatment with MT ¼ 560 �C (where all precip-
itates are dissolved).
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observed for all cycles and amplitudes. The maximum num-
ber of dislocation per slip band needed to fit the experiments
is much higher than in Sinclair et al. [13] on copper (1100 vs.
6.7). Nevertheless, the ratios n�Gb=kG � 12� 10�3 that repre-
sent the maximum plastic shear angle in each slip band have
a similar order of magnitude (�5� 10�3 in Ref. [13]). Fig. 9
(a)

(b)

(c)

(d)

Fig. 10. Comparison between simulations and experimentations for
maximum temperature (MT) tests (with heating rate HR ¼ 15� C s�):
(a) T6 state; (b) MT ¼ 300� C s�; (c) MT ¼ 450� C s�1; (d)
MT ¼ 500 �C/s.
shows the results of the fitting procedure on the samples
where all precipitates are dissolved (MT ¼ 560 �C).

5.2.3. Precipitated states
The precipitate effect has then been introduced by fitting

kp
2;u and n�ppt to limit the isotropic hardening for the coarse
(a)

(b)

(c)

(d)

Fig. 11. Comparison between simulations and experimentations for
heating rate (HR) tests (with maximum temperature MT ¼ 400 �C): (a)
HR ¼ 0:5� C s�1; (b) HR ¼ 15� C s1�; (c) HR ¼ 70� C s�1; (d)
HR ¼ 180� C s�1.
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bypassed states and to increase the kinematic contribution
on curves where the precipitate density is high. In all the sim-
ulations presented in Figs. 10 and 11 the storage of Orowan
loops (associated with nppt dislocations) predicted by the
modified version of Proudhon’s relation (19) is very small
(close to a few MPa) irrespective of the saturation value
n�ppt and u. Thus, in order to decrease the number of fitting
parameters, the choice was made to keep an ideal storage
case u ¼ 1 (as in Ref. [18]) and no saturation in the nppt evo-
lution (n�ppt !1). The numerical value X ppt is still small and
the Bauschinger effect (offset 0.02%) is still underestimated
in the first stage of the plastic flow for several samples,
despite a consistent hardening slope after the elastoplastic
transition. Our fitting provides kp

2 < k0
2, which suggests that

precipitates rather pin the dislocations than favour cross-
slip, as already proposed in Ref. [18] (this effect is probably
due to the shearing of precipitates by block dislocations).
6. Results and discussion

6.1. Yield stress, kinematic and isotropic hardening

Fig. 10 compares the experimental stress–strain cyclic
curves and the one predicted by the system of Eqs. (20)
Fig. 12. Contributions to the flow stress: (a) at the end of the last deformation
as a function of the cycle number.
for all investigated MT treatments. It can be seen that both
kinematic and isotropic hardening are well captured by the
model: the fully precipitated T6 state exhibits high yield
stress and a constant isotropic hardening (superimposed
cyclic curves), whereas the precipitate-free state exhibits
low yield stress and important isotropic hardening. Similar
observations can be done in Fig. 11, which compares simu-
lations and experiments for various HR treatments. Gener-
ally speaking, Figs. 10 and 11 show that the higher the
precipitate density, the higher the kinematic hardening.

6.2. The role of hardening components

Thanks to this approach, it is now possible to differenti-
ate the contributions of hardening and plastic flow. Fig. 12
describes all contributions of isotropic hardening (disloca-
tions, precipitates and solid solution) and kinematic hard-
ening (grain boundaries and precipitates) to the total flow
stress for all MT treatments (a) and for MT ¼ 560 �C as a
function of the cycle number. It can be noted that under
400 �C, precipitation is the major source of hardening, even
after the last deformation cycle (see Fig. 12a). Moreover,
for the MT ¼ 560 �C treatment, dislocation hardening takes
more and more importance as deformation increases (see
Fig. 12b).
cycle at 0.9% for all MT treatments; (b) for the MT ¼ 560 �C treatment
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6.3. Elastoplastic transition

However, though yield stress and hardening are well
described by the model, the elastoplastic transition occur-
ring after the first cycle requires further effort to achieve
an accurate representation. Nevertheless, as shown for
example in the T6 state (Fig. 10a), the kinematic hardening
stored during the first tensile loading is much lower than
the experimental Bauschinger effect (offset 0.02%) observed
in the following compressive test. This effect is due to the
slip irreversibility phenomena already mentioned in Refs.
[10,12,43]. With a classical version of the kinematic harden-
ing this effect cannot be modelled because by increasing the
backstress as in the experiments the hardening slope would
become too high compared to experimental one. To
improve this version a larger backstress in the elastoplastic
transient is needed. According to Fribourg et al. [10] and
Han et al. [12], this effect can be induced by the Orowan
loops that mask the precipitates during the first step of
the reverse loading, but here the number of Orowan loops
is low (small strain). Then, the present effect is quite
probably induced by the slip irreversibility due to sheared
precipitates as reported in Ref. [43].

6.4. Grain size effect

This coupled model opens new prospects to study the
effect of grain size on kinematic hardening. As highlighted
in Ref. [37], the grain size has a potential impact on the
presence of persistent slip band morphologies and then
probably on kG, which is assumed constant as in Sinclair
et al. [13].

6.5. Connection to the Armstrong–Frederick model

A simple unidirectional and physically based formalism
has been proposed in this paper. It is remarkable that this
formalism is rigorously equivalent to the widely used Arm-
strong–Frederick phenomenological law (see Eq. (23) of
Ref. [23]):

_X ¼ CAF _�p � cAF X _p ð22Þ
where CAF and cAF are two phenomenological constants.
Indeed, thanks to Eqs. (20), this work reveals the physical
meaning of the phenomenological constants CAF and cAF

that can be identified as CAF
G ¼ 2M2blkG=D and

cAF
G ¼ MkG=ðbn�GÞ for the grain boundary contribution

and CAF
ppt ¼ vf bp

V M=ðb
ffiffiffi
3
p
Þ and cAF

ppt ¼ Mlbp=ðb
ffiffiffi
3
p

n�pptÞ for the

precipitate contribution. Thus, this model can be straight-
forwardly written in the Armstrong–Frederick tensorial
form, while keeping its physical bases. To the authors’
knowledge, such a connection had never been proposed
before.
7. Conclusion

Aluminium 6061-T6 samples were subjected to a wide
range of non-isothermal heat treatments leading to various
microstructural state from T6 to fully dissolved precipitate-
free state. These two extreme states were investigated by
TEM.

All samples were then subjected to multilevel cyclic
loading, highlighting the complex behaviour of this
age-hardening alloy at room temperature for different pre-
cipitation states. For the T6 state, a high initial yield stress
with a behaviour similar to a pure kinematic behaviour is
observed (the isotropic contribution to the yield stress is
constant during the cycles). For other treatments, the fewer
the precipitates, the lower is the initial yield stress and the
higher is isotropic hardening.

A recently developed precipitation model, particularly
adapted to these precipitates, has been used to predict the
precipitation state (in terms of the full precipitation size dis-
tribution) for each non-isothermal treatment. This model
was then coupled to a strengthening model in order to pre-
dict the yield stress. This coupling was validated comparing
the experimental and predicted yield stress for various
precipitation states.

A specific effort was devoted to build a novel work-hard-
ening model based on the KME formalism. In addition to
the classical forest isotropic hardening, this model consid-
ers the effect of both grain boundaries and precipitates on
kinematic hardening as well as their effect on the isotropic
contribution. Several parameters were identified thanks to
cyclic tests performed on the two extreme conditions: fully
precipitated and precipitate-free states. This model gives a
good agreement for both isotropic and kinematic
hardening.

The coupling between the precipitation, yield stress and
hardening models provides a powerful and versatile frame-
work able to predict and/or analyze cyclic tests for a wide
range of microstructural states.

Moreover, this model provides a physical meaning for
the constants of the tensorial Armstrong–Frederick law as
far as the grain boundaries and precipitate contributions
are concerned.
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Appendix A. The introduction of a strained ellipsoidal
inclusion in the crystal (assumed elastic) is an Eshelby prob-
lem [9]. For small perturbations, the partition of strains
�ij ¼ �e

ij þ ��ij leads to [40]:
rij ¼ 2l �ij � ��ij
� �

þ kdkl �kl � ��kl

� �
ð23Þ

where the total strain is �ij ¼ Sijkl�
�
kl with Sijkl being the

Eshelby tensor. Applying this relation in the slip plane
�13 ¼ �31 ¼ ��ppt as in Ref. [9], we get a scalar expression:

r31 ¼ 2l S31kl�
�
kl � ��31

� �
ð24Þ

where only �13 and �31 are not equal to zero in the slip plane.
By symmetry Sijkl ¼ Sjikl ¼ Sijlk , leading to:

r31 ¼ 2l 2S3131 � 1ð Þ ¼ �2lX��31 ¼ �lXc�31 ð25Þ
where X > 0 is the accommodation factor.
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