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The separation between partials in face-centered-cubic (FCC) alloys is known to be a function of the

elastic constants and the stacking fault energy (SFE). In this work, we complete this classical picture by

investigating three other effects. First we show that the applied stress component in the slip plane

perpendicular to the Burgers vector induces an additional force on the partials. Depending on the value

of the SFE, a critical value for this shear component leads to an infinite separation, which explains the

deformation mechanism by formation of extended stacking faults. In alloys where the friction stress is

not negligible, we show that the friction plays an important and complex role on dissociation,

depending on the previous dislocation motion. This factor can be responsible for the discrepancy in

experimental measurement of the dissociation width. In all cases, we show that the effect of the friction

stress vanishes as soon as the dislocation starts gliding in its slip plane. Finally, we show that the choice

of effective shear modulus in elastically anisotropic materials constitutes an important feature in the

determination of the equilibrium dissociation width.

& 2013 Published by Elsevier B.V.
1. Introduction

The dislocation dissociation is an important feature in low SFE
materials such as AISI 316 type austenitic stainless steels [1,2].
The dissociation is supposed to be the controlling factor in the
formation of twins and extended stacking faults [3,4]. Large
numbers of experimental investigations report on the activation
of these mechanisms in the 316L steels (see for example [5,6]).

Recently, Byun [7] investigated the role of the applied stress on
the partial separation and showed that some stress components
may be responsible for the spreading of stacking faults, affecting
substantially the deformation microstructure.

In these investigations, an implicit assumption is made: the
friction stress on the Shockley partials is considered to be
negligible. In the case of pure FCC metals, this assumption is
quite plausible, since the critical resolved shear stress measured
on single crystals is very low. However, in industrial materials
made harder by alloying, this assumption may be questionable.

In this paper, we investigate theoretically the role of the
applied stress as well as the friction stress on the dissociation
spacing. Unlike the convention considered by Byun [7], we
consider a configuration in which a stress tensor is applied to a
Elsevier B.V.

).
crystal containing a slip system with a fixed Burgers vector and
slip plane. The dissociation distance is studied as a function of the
dislocation character, i.e. the angle made by the dislocation line
and its Burgers vector. The force balance includes the presence of
a friction stress on every Shockley partial. For the sake of
simplicity, we consider here the mathematical derivation of an
isotropic material, which makes sense when we consider that in
Discrete Dislocation Dynamics a wide range of codes are based on
the isotropy concept. Thus we then make an application on the
case of the 316L steel and we discuss the effect of friction stress
and the choice of the effective isotropic elastic constants on the
dissociation width.
2. Force components

Consider a perfect dislocation with a line vector parallel to the
e
!

r axis of a cylindrical coordinate system, incorporated in
a Cartesian coordinate system as shown in Fig. 1. The ortho-
normal Cartesian axes coincide with the crystal axes: e

!
x ¼

1=
ffiffiffi
2
p� �
½1 1 0�, e

!
y ¼ 1=

ffiffiffi
6
p� �
½1 1 2� and e

!
z ¼ 1=

ffiffiffi
3
p� �
½1 1 1�. The

dislocation Burgers vector is b
!
¼ 1=2
� �

½1 1 0� and can be written
as b
!
¼ b e
!

x. The normal to the slip plane matches with the z-axis
of our coordinate. The dislocation character refers to the angle y
between the dislocation line vector e

!
r and the Burgers vector. In

order to study the influence of the applied stress tensor on the
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Fig. 1. Configuration of the perfect and dissociated dislocations.
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dissociation of a dislocation loop in a given slip system, the
dislocation Burgers vector should be kept constant while the
angle y varies from 0 (screw dislocation) to 901 (edge dislocation).
This change in the dislocation character differs from that con-
sidered by Byun [7], who fixed the dislocation line vector and
considered a rotation of the Burgers vector in the slip plane,
which leads to a rotation in comparison with the stress coordinate
system. We believe that the Burgers vector of the slip system
should be fixed in the crystal coordinate system for two reasons:
(i) the direction of the Burgers vector cannot rotate freely since
it must match with the dense crystallographic direction and
(ii) along a dislocation loop the Burgers vector is constant while
the dislocation line vector varies.

According to the elastic theory of dislocations [3], the perfect
dislocation described above tends to dissociate into Shockley
partials as sketched in Fig. 1. We consider the dissociation plane
to be the x–y plane. The leading partial is given by b

!
1 ¼ ½ab0�,

while the trailing partial is b
!

2 ¼ ½a �b 0�, where a equals (a
ffiffiffi
2
p

=4)
and b equals (a

ffiffiffi
6
p

=12) and a is the lattice parameter. With these
variables, the Burgers vector becomes b

!
¼ ½2a 0 0�. In order

to investigate the effects of all stress components, we consider
the general stress tensor S written in our Cartesian coordinate
system:

X
¼

sxx tXY tXZ

tXY sYY tYZ

tXZ tYZ sZZ

0
B@

1
CA ð1Þ

Given the configuration considered in Fig. 1, the resultant
forces per unit length on the leading partial is given by

F
!

1 ¼ F
!

int�g e
!

yþ F
!

PK ,1þe1Ff e
!

y ð2Þ

This balance of forces is equivalent to the one presented by
Hirth and Lothe [3], except that in this study the force compo-
nents are more detailed. The different forces appearing on the
right-hand side are, correspondingly the interaction force with
the trailing partial, the attractive force resisting the expansion of
the stacking fault, the Peach–Kœhler force [8] and the friction
force: Ff¼btf, where tf is the friction stress. e1 is a sign parameter
(e1¼71) depending on the direction of motion of the leading
partial. Equivalently, the effective stress on the trailing partial can
be given as

F
!

2 ¼ F
!

intþg e
!

yþ F
!

PK ,2þe2Ff e
!

y ð3Þ

Note that since the crystallographic nature of the two partials
is different, there is no evidence that both friction forces are
equal. However, for the sake of simplicity we consider that the
difference between them is negligible. Projecting these forces on
the e
!

y axis, we get

F1 ¼ F
!

1U e
!

y ¼ F int�gþFPK ,1þe1Ff ð4Þ
for the leading partial and

F2 ¼ F
!

2U e
!

y ¼�F intþgþFPK ,2þe2Ff ð5Þ

for the trailing partial. Using the classical formulas for the Peach–
Kœhler force [8], one finds

FPK ,1 ¼ atxzþbtyz ð6Þ

and

FPK ,2 ¼ atxz�btyz ð7Þ

As expected, only the stress component parallel to each
Burgers vector component contributes to the effective force on
every partial. On the other hand, the interaction force per unit
length between the parallel partials can be computed using Eq.
(5.17) of Hirth and Lothe textbook [3], which was first developed
by Nabarro [9]. In our case, we have

Fint ¼
G

2pd
a2þb2
� �

cos2y�b2
þ
a2sin2y�b2cos2y

1�n

" #
ð8Þ

where G is the shear modulus and d the spacing between partials.
Since a2 and b2 equal respectively (b2/4) and (b2/12), Fint can be
reduced to

Fint ¼
Gb2

24p 1�nð Þd
2þn�4ncos2y
� �

ð9Þ
3. Equilibrium at zero applied stress

When txz and tyz vanish, one can identify the equilibrium
dissociation distance. The energy of the dissociated dislocation
E(d) must exhibit a minimum for the equilibrium spacing d¼d0.
If every partial is shifted away from the other one by dx, the
associated change in energy is given by DE¼F1 dx�F2 dx. Since at
equilibrium DE must vanish, we have 2Fint�2gþe1Ff�e2Ff ¼ 0.
The parameters ei depend on the direction of motion of every
partial dislocation towards the equilibrium position. Two impor-
tant cases can be distinguished. If the partials move away from
each other towards the equilibrium dissociation distance d0, then
e1 is equal �1 and e2 is equal þ1 and the separation distance
reached is

d0
1 ¼

2þn�4ncos2y
24p 1�nð Þ

Gb2

gþFf
ð10Þ

In the other case where the dissociation tends to shrink from
larger dissociation distance, partials move towards each other and
e1 is now equal to þ1 and e2 is �1. We then have

d0
2 ¼

2þn�4ncos2y
24p 1�nð Þ

Gb2

g�Ff
ð11Þ

The presence of a friction force causes a degeneration of the
dissociation distance depending on the direction of motion of the
partials.
4. Dissociation under applied stress

Only the applied shear components txz and tyz contribute to
the force on the partial dislocations. The sum of the two forces
corresponds to the net force Ftot on the perfect dislocation, i.e. on
the ensemble of the two partials. Depending on the sign and
amplitude of the non-friction part of F1 and F2, namely

Fnf
1 ¼ Fint�gþFPK ,1 ð12Þ

Fnf
2 ¼�FintþgþFPK ,2 ð13Þ



Table 1
Displacement scenarios for each partial and associated value of e1,2 and/or F1,2.

Partial Condition E1, 2 Action

1 Fnf
1 4Ff

e1¼�1 Displ. twds e
!

y

�Ff oFnf
1 oFf

F1¼0 Partial 1 pinned

Fnf
1 o�Ff

e1¼þ1 Displ. twds � e
!

y

2 Fnf
2 4Ff

e2¼�1 Displ. twds e
!

y

�Ff oFnf
2 oFf

F2¼0 Partial 2 pinned

Fnf
2 o�Ff

e2¼þ1 Displ. twds � e
!

y
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Three possible scenarios per partial can occur: it can move
backward, forward or be pinned (see Table 1).
Fig. 2. Typical surface of dissociation distance between both partials for different

values of stresses in the (txz, tyz) plane. Friction force has been set to tf¼90 MPa

(Ff¼btf) [16]. Voigt average for the effective isotropic elastic constants has been

considered (see text).

Fig. 3. Partial separation distance versus stress component tyz for different SFE

values g (edge character) and in the inset SFE dependence of critical stress tyz.

Voigt average for the effective isotropic elastic constants has been considered..
5. Discussion

We discuss our results in light of application on the 316L steel,
which is of technological interest in nuclear industry. The
single crystal elastic constants are C11¼210 GPa, C12¼130 GPa,
C44¼120 GPa [10]. The application of our theoretical results on
this material faces two difficulties: (i) the material is highly
anisotropic and (ii) the SFE varies substantially between the
different alloys from 10 to 40 mJ/m2 [2]. For the sake of simpli-
fication, we treat three sets of effective isotropic elastic constants:
the Voigt average [11] (G¼88 GPa, n¼0.26), the Reuss average
[12] (G¼60, n¼0.32) and the Scattergood and Bacon average
[13,14] (G¼61, n¼0.4).

In the absence of applied stress and depending on the
considered effective elastic constants, we get different values for
the friction-free material concerning the screw (y¼01) and edge
(y¼901) perfect dislocations. Depending on the material and the
elastic constants to be considered, the dissociation of screw
dislocations varies from 1.7 to 11.8 nm, while that of edge
dislocations varies from 4.2 to 21.9 nm.

Depending on the average considered, the dissociation dis-
tance for the screw dislocation varies by almost a factor of two,
while that of the edge dislocations changes only by 30%. Increas-
ing the SFE by a factor of 4 causes the dissociation distance to
decrease by a factor of 4.

In the presence of applied stress, the stress component parallel
to the perfect Burgers vector, i.e. txz in our configuration, con-
tributes to a global motion of the two partials in the same
direction. However, the presence of a shear stress component
perpendicular to the perfect Burgers vector leads to a change in
separation distance. In the configuration of Fig. 1, a negative value
of tyz enhances the effect of the SFE, while a positive value of tyz

causes the stacking fault to extend. Escaig stress had to be
introduced right at the time when we defined it [17]. But in this
study, we are not considering the effect of curvature.

The dissociation distance has been evaluated as a function of
txz and tyz (see Fig. 2). The friction force Ff¼btf with tf¼90 MPa
has been used in this paper, in agreement with molecular
dynamics simulations performed on a Fe–Ni–Cr alloy [16].

Depending on the applied stress, three domains are observed
on Fig. 2
1)
 F1¼F2¼0 (in a diamond shaped domain delimited by
9atxyþbtyz9obtf and 9atxy�btyz9obtf ), both partials are
pinned by the friction force and thus remain immobile;
2)
 one (or two) partial(s) is (are) pinned and the dissociation
distance tends to an equilibrium value;
3)
 one (or two) partial(s) is (are) unpinned and the dissociation
distance diverges to infinity.
In the case where both partials are moving in the same direc-
tion (thanks to the contribution of txz), we have e1¼e2¼71.
Thus, at dynamical equilibrium, the dissociation distance is such
that the force acting on both partials is equal: F1¼F2, leading to
the dissociation distance

dt ¼
2þn�4ncos2y

24p 1�nð Þ

Gb2

g�btyz
ð14Þ

It is remarkable that the separation dt between partials
becomes independent of the friction stress and the txz shear
stress component. Moreover, for a critical value tyz,c¼g/b, the
partial separation becomes infinite for screw dislocations as well
as for edge dislocations. This conclusion is different from that
drawn by Byun [7], who stated that dissociation distance diverges
only for screw dislocations. This difference is due to (i) the
evolution of the stress state with the dislocation line orientation:
in Byun’s paper, the dislocation line was fixed whereas the
orientation of the Burgers vector varied (which is a surprising
choice); and (ii) Byun only considered txz to be non-zero, whereas
it has been shown here that tyz contributes to the partials
divergences.

The evolution of the dissociation distance versus shear stress
component tyz is presented in Fig. 3 for different value of SFE.
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For the reference 316L material, tyz, c varies between 100 MPa
(for g¼ 10 mJ=m2) and 500 MPa (for g¼ 40 mJ=m2). For Nickel
(g¼ 125 mJ=m2), it is not possible to evaluate tyz, c in this stress
range. As discussed by Byun [7] these stress levels can be easily
met during deformation of austenitic steels [1] and are frequently
reached in mechanical tests [2,15]. In this case, partial disloca-
tions are expected to move separately, thus, inducing extended
faults and facilitating twin formations.
6. Conclusion

Theoretical analysis of the effect of the stress on the separation
distance of partial dislocations has been investigated. The results
obtained in this article are summarised as follows:
1)
 A global expression has been established gathering the
different forces exerted on dislocation partials. The stress
acting on the dislocation is introduced using the Peach–
Kœhler formula. The partials experience attractive and
repulsive forces, which are introduced via the SFE, the
Nabarro Formula and the Peach–Kœhler formula.
2)
 It is shown that only two stress components txz and tyz

affect the dislocation: txz leads to the movement of the
whole dislocation whereas tyz influences the dissociation
distance.
3)
 Above a critical stress tyz, which depends only on the SFE, it
is found that the distance between the two partials
diverges, whatever the dislocation type (edge or screw).
4)
 The friction stress on partial dislocations is found to affect
strongly the dissociation width. Depending on the previous
motion of the dislocation this stress may retain the partials
far from their equilibrium spacing.
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