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Abstract

An Fe–C potential based on the Embedded Atom Method has been derived, adjusted on ab initio data. This potential is dedicated to
the study of ferritic FeC solid solutions for low carbon concentrations. This potential has been validated by checking its behaviour in the
simulation of C diffusion in a-Fe and by determining the interaction of C atoms with a screw dislocation. The evolution of the matrix
lattice parameter versus C content, related to the tetragonal lattice structure has also been evaluated as well as external stress effects on
the diffusion energy barrier. The theoretical results are in good agreement with the experimental data available.
� 2006 Elsevier B.V. All rights reserved.

PACS: 61.72.�y; 61.72.ji; 61.72.Lk; 61.72.Yx; 62.20.Fe; 67.80.Mg
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1. Introduction

Carbon is one of the most frequent Foreign Interstitial
Atoms (FIA) in the Fe matrix along with nitrogen atoms.
Below its solubility limit, the presence of even a very little
amount of these impurities in interstitial positions (a few
tens ppm), can have a drastic influence on the steel proper-
ties, as they build strong interactions with the lattice defects
present in the steel. It is well known that the interaction of
C with dislocations and/or substitutional atoms has impor-
tant effects on the yield stress and the subconsequent
mechanical properties of the materials.
0927-0256/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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To understand the role of C it is important to character-
ize its interaction with defects at the atomistic level. This
can be done for instance by ab initio calculations [1,2] or
using Molecular Dynamics in conjunction with empirical
potentials or Monte Carlo simulations.

Some FeC empirical potentials have been derived in the
past. Johnson et al. [3] derived two-body central potentials
for the FeC systems. The metal–metal and the metal–
carbon interactions are described by pairwise potentials
(it is now widely agreed that pairwise interactions alone
are not appropriate to model metal–metal interaction),
and no carbon–carbon interactions was assumed. The
Fe–C interaction potential was constructed such that the
experimental carbon migration energy in Fe, and the acti-
vation volume for that migration, as well as the binding
energy of a carbon vacancy dipole were reproduced by
the model. Rosato [4] used a more realistic potential for
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Fe, based on the tight binding second moment approxima-
tion, achieving a better calculation of elastic properties and
a more natural agreement with experimental data. For the
metal–metal potential he used for bcc Fe a Finnis–Sinclair
model, [5] for fcc Fe a Rosato–Guillope–Legrand model
[6]. The carbon–metal interaction is also described by a
pair potential, and as the author aimed at studying
the behaviour of a single C atom, he did not derive any
carbon–carbon interaction.

More recently, Ruda et al. [7] derived an embedded atom
method potential for FeC. The potentials were adjusted on
ab initio calculations from the literature of the metastable
carbide FeC in the B1 structure. The authors reproduced
the equilibrium lattice constants, the bulk moduli and the
cohesive energies for each of the stable and metastable car-
bides. However this potential finds the tetrahedral sites as
energetically favoured, which is in contradiction with what
is usually accepted or found theoretically [2].

One flaw of these potentials is that the Fe part of the
model does not predict the correct structure of the screw
dislocation core as well as the relative stability of the self
interstitials.

Recently, ab initio calculations based on the Den-
sity Functional Theory (DFT), have been performed by
Domain and co-workers [2] in the ferritic FeC system to
determine the interactions of C atoms with one vacancy,
the interaction between a self interstitial atom (SIA) and
a C atom as well as the interactions between two C atoms.
The diffusion properties of C were also investigated. Strong
interactions of C atoms with one vacancy were obtained,
whereas no significant interaction between the C atom
was found with the SIA for the configurations investigated.
As for the interaction between two C atoms, it was found
to be repulsive for the three configurations explored, in
which the C atoms were certainly too close to each other.
Some of the configurations investigated in the work of
Domain and co-workers [2] have been used in this work
to parameterize an FeC potential dedicated to the study
of ferritic FeC solid solutions for low C concentrations.

In the first part of this paper, the method used to derive
the potential is described. In a second part, the newly
derived potential is tested by confronting its prediction
with the DFT based ab initio calculations of [2] as well
as with other, nonpublished ab initio results, also derived
by ourselves.

In the third part, the potential is validated by molecular
dynamics and molecular statics simulations. First, calcula-
tions of the carbon concentration influence on the iron
matrix structure have been performed. Then, the carbon
diffusion barrier at 0 K and the carbon diffusion coefficient
for various temperatures has been determined. Next, in the
purpose of using this potential to model the Snoeck peak
(internal friction), the influence of stress on the carbon dif-
fusion barrier has been investigated. Finally, the interac-
tion of a screw dislocation with a single carbon atom
positioned in different octahedral sites next to the disloca-
tion is presented.
2. Methodology

2.1. The ab initio database

The ab initio calculations were performed using the
Vienna Ab initio Simulation Package VASP [8–10]. They
were done in a plane wave basis set, using fully nonlocal
Vanderbilt-type ultrasoft pseudopotentials (USPP) to
describe the electron–ion interaction [11]. Pseudopotentials
simplify electronic-structure calculations by eliminating the
need to include atomic core states and the hard potentials
responsible for binding them. They allow also the use of
a finite number of plane waves. Exchange and correlation
were described by the Perdew and Zunger functional [12],
adding nonlocal correction in the form of the Generalised
Gradient Approximation (GGA) of Perdew et al. [13].
All the calculations were done with this functional. The
pseudopotentials were taken from the VASP library. For
Fe, the six 3d electrons are considered as valence ones
together with the two 4 s. For C, four valence electrons
are used: 2 s and 2p.

The supercell approach with periodic boundary condi-
tions (PBC) was used to simulate point defects as well as
pure phases. Brillouin zone (BZ) sampling was performed
using the Monkhorst and Pack scheme [14]. The ion relax-
ations were performed using the standard Conjugate-
Gradient algorithm implemented in the VASP code. For
the solid solution calculations and the defect calculations,
the relaxations were done at constant volume thus relaxing
only the atomic positions in a supercell dimensioned with
the equilibrium lattice parameter for Fe (2.8544 Å). This
allows one to use a smaller plane wave cut-off energy and
thus to speed up the calculations without altering the accu-
racy of the results. The plane wave cut-off energy was
290 eV. The error induced by this lower cut-off energy
was checked to be negligible, as can be seen in a previous
study of point defects structures in bcc Fe [15].

In all the results presented here, the number of k points
(used to pave the Brillouin zone) is the total one and there-
fore not the number of irreducible k points. In all the
tables, the ‘‘number of atoms’’ is more precisely the num-
ber of metallic atoms regular sites (as opposed to the num-
ber of interstitial sites) in the perfect supercell, i.e. the cell
without any vacancies or Self Interstitial Atoms (SIA).

Most of the ab initio data have been published elsewhere
[2], however, some unpublished results concerning in par-
ticular the interactions between two vacancies and one C
atom as well as two C atoms and one SIA have been added
to the ab initio database. Note that most of the ab initio
configurations were used to validate the potential rather
than to adjust it.
2.2. Construction of the potentials

The potentials were built according to the Embedded-
Atom Method derived by Daw and Baskes [16,17] using



Table 1
Parameters of the cross Fe–C potential

I ai (eV/Å3) bi (Å)

N

1 25.8403449446387 1.57392207030071
2 12.1869023019844 1.64805018491946
3 5.29633693622809 2.50697533078414
4 4.03000262768764 2.55706258348374
5 �7.23257363478654 2.74993431502404
6 9.19127905165634 3.08003832563079
7 �7.91809159848018 3.11129997684853
8 0.283612435794859 3.50162017458081

Table 2
Parameters of the C electron density potential. a.u. means density
arbitrary units

I ci (a.u./Å3) di (Å)

N

1 �10.7034165597827 �41.4959151233716
2 �0.0964623684409615 4.80768853808491

Table 3
Parameters used in the C embedding function potential a.u. means density
arbitrary units

Parameter Value

F1 (eV a.u.�1/2) �1.96195396340978
F2 (eV a.u.�2) 9.88733654634282 · 10�4
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the ASSIMPOT software [18]. In this scheme, the total
energy Etot of a collection of atoms is given by

Etot ¼
1

2

X
i;j

UijðrijÞ þ
X

i

F i

X
j 6¼i

qjðrijÞ
 !

ð1Þ

Here Uij(rij) is the pair-interaction energy between atoms i

and j separated by the distance rij, Fi is the embedding
energy of the atom i and �qi ¼

P
j 6¼iqjðrijÞ is the host electron

density induced by the surrounding atoms j at the location
of the atom i. The electron-density function assigned to
atom j is qj(rij). The pair interaction, electron-density and
embedding functions depend on the atoms type. A descrip-
tion of a binary system Fe–C requires thus seven potential
functions (UFeFe(r), qFe(r), F Feð�qÞ, UCC(r), qC(r), F Cð�qÞ,
UFeC(r)). These functions describe the atomic interactions
in the pure a-Fe system, in the pure C system and the pair
interactions between atoms Fe and C.

In the frame of ASSIMPOT, these functions are discre-
tized on a mesh or projected on a finite number of func-
tions (see below) and the fitting comes down to determining
a finite set of coefficients that yields the minimal deviation
between EAM model and the reference data. The optimiza-
tion is realized with the algorithm derived by Broyden,
Fletcher, Goldfarb and Shanno (BFGS algorithm) [19],
thus the gradient of the computed properties with
respect to the unknown parameters is needed. As this com-
putation can become prohibitively costly in presence of a
big number of unknowns, ASSIMPOT computes the so-
called adjoint model [20,21], which keeps the cost of the
gradient calculation independent of the number of
unknowns.

There exist different strategies for generating a poten-
tial for binary systems. One is to employ good quality
pure-Fe and pure-C potentials constructed separately
and fit a cross potential UFeC(r). The principal problem
is that the number of parameters to fit to the properties
of intermediate compounds is in our case limited. The
other strategy is to optimize all seven potential functions
simultaneously by fitting them to the whole set of data
available for the system. This strategy provides more flex-
ibility for selecting one compound and fitting its proper-
ties more accurately in comparison with other phases of
the system.

As the purpose of the potential is to simulate dilute solid
solutions, the interactions between C are not crucial and
for instance the angular interactions do not need to be
taken into account. A potential for a-Fe has been pub-
lished recently [22] which has been adjusted on ab initio
data and is nowadays commonly admitted to be the state
of the art potential for this material. It was thus decided
to use this Fe potential and to choose a combination of
the first and the second approach, in the sense that during
the building of the FeC potential the functions characteriz-
ing the pure-Fe potential UFeFe(r), qFe(r), F Feð�qÞ were fixed,
while all the other potential functions (qC(r), F Cð�qÞ,
UFeC(r)) were totally free to change.
2.3. Parametrization and fitting procedures

For the FeC interaction, the function was chosen to be a
linear combination of truncated polynomials of degree 3,
as in [23,24]:

UFeCðrÞ ¼
Xn

i¼1

aiHðbi � rÞðbi � rÞ3 1 Å 6 r 6 3:502 Å

ð2Þ
where H is the Heavyside function, and ai and bi the
parameters gathered in Table 1. The advantage of this form
of function is that it allows to act locally on the function
while keeping global regularity.

For C atoms, the electron density was postulated to be
of the form

qCðrÞ ¼
Xn

i¼1

ciHðdi � rÞðdi � rÞ3 0 Å 6 r 6 4:808 Å ð3Þ

where the ci and di parameters are given in Table 2.
Finally, the embedding function was represented by the

following function:

F CðqÞ ¼ F 1

ffiffiffi
q
p þ F 2q

2 ð4Þ
where the parameters appear in Table 3.

As the potential aimed at simulating dilute solid solu-
tions, no pair interaction between C atoms was derived.

The parameters were adjusted using the ASSIMPOT
code and two ab initio configurations: one where the C
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atom was in a tetrahedral configuration, the other one
where the C atom was in a octahedral configuration. The
ASSIMPOT code had to reproduce not only the energy
of these configurations but also the forces acting on the
atoms. At the end of the fitting procedure, the root-
mean-square deviation on the forces was on the order of
10�2 eV/Å, while the relative error on the energies was
on the order of 10�4 eV.

Furthermore, to make sure that the octahedral configu-
ration was stable or more precisely metastable, the deriva-
tive of the energy versus the lattice parameter and the
atomic positions at this precise location was compelled to
be 0 during the fitting procedure.

3. Test of the potential: confrontations with other

ab initio calculations

As stated above, the potential has only been adjusted on
two ab initio configurations: one where the C atom was in a
tetrahedral configuration, the other one where the C atom
was in a octahedral configuration. In this paragraph, we
now compare the prediction of the newly built potential
with ab initio results not used in the fitting procedure.

Table 4 indicates the relaxation (in percent of Ddi=d0
i Þ

around the C in the bcc structure as well as the C migration
energy obtained by ab initio calculations, compared to the
data obtained with the newly derived potential.

The experimental migration energy of C determined by
resistivity measurements, positron-life time measurements
or Snoek relaxation lies between 0.81 eV and 0.83 eV [25].
However, Takaki and co-workers by resistivity recovery
of high purity and C doped iron finds a higher value of
0.88 eV [26] for a carbon atom in a-Fe. The ab initio data
is in good agreement with the experimental results and the
empirical potential agrees also with the experimental mea-
surements, as it was adjusted on the tetrahedral and octa-
Table 4
Relaxation (in percent of Ddi=d0

i ) around the C in the bcc structure and C
migration energy (eV)

DFT–GGA: this work
(128 atoms, 27 k points)

EAM:
this
work

Exp.

Octahedral site

Relaxation of 1nn shell
in percent of Ddi=d0

i

+24.3 +25.1

Octahedral site

Relaxation of 2nn shell
in percent of Ddi=d0

i

�1.8 �2.2

Tetrahedral site

Relaxation of 1nn shell
in percent of Ddi=d0

i

+13.9 +12.2

Tetrahedral site

Relaxation of 2nn shell
in percent of Ddi=d0

i

�2.9 +0.06

Emigration (eV) 0.90 0.85 0.81–0.88
(see text)
hedral configurations (the migration energy of C
corresponds to the difference in energy between these two
interstitial configurations).

Table 5 gathers the binding energies Eb for different con-
figurations involving carbon atoms and/or vacancies and/
or dumbbells. The binding energy Eb(A1,A2) is defined as
the difference of two system energies Enoninterac and Einterac:

EbðA1;A2Þ ¼ Enoninterac � Einterac

In system noninterac A1 and A2 do not interact, i.e. they are
situated far enough from each other not to interact. In sys-
tem interac, A1 and A2 interact, and the distance between A1

and A2 may be first nearest neighbour distance, second
nearest distance as well as other well defined configurations.

Because of the relatively small supercell sizes one has to
use in the ab initio calculations, it is rather difficult to make
sure that the two entities in system noninterac do not inter-
act even when they are as far as the supercell size allows.
Therefore another method has to be used to determine
the binding energies. It consists in subtracting from the
energy of system interac (where A1 and A2 interact), the
energy of a system containing A1 (calculated with a super-
cell with a size similar to that of system interac.) as well as
that of a system containing A2 (obtained with similar con-
ditions) and that of the supercell with neither A1 nor A2.
For a supercell containing N atoms, the binding energy is
thus obtained as

EbðA1;A2Þ ¼ ½EðA1Þ þ EðA2Þ� � ½EðA1 þ A2Þ þ Eref � ð5Þ

where Eref is the energy of the supercell without A1 and A2,
E(Aj) is the energy of the supercell containing Aj only and
E(A1 + A2) is the energy of the supercell containing both
A1 and A2 in interaction with each other (i.e. the energy
of system interac in the previous method). All the supercells
contain the same number of metal sites, i.e. have the same
size.

When more than two entities interact, the equation is
generalised as follows:

EbðA1;A2; . . . ;AnÞ ¼
X

i¼1;...;n

EðAiÞ

� EðA1 þ A2 þ � � � þ AnÞ þ ðn� 1ÞEref½ �
ð6Þ

Except when otherwise stated, the reference state of the
binding energies presented in this work is always the energy
of a supercell without any defects, i.e. a perfect crystal.
With such a scheme a positive binding energy means attrac-
tion between the entities, while a negative binding energy
indicates a repulsion.

The ab initio results for the vacancy–C binding energy
(Table 5, configuration a) are in good agreement with the
data obtained by Johnson (0.41 eV) [3,27] or by Rosato
(0.48 eV) [4] with empirical potentials. However the com-
parison with experimental results is not straightforward as
they are not always very coherent and arise from different
techniques. Arndt and Damask [28] examining a neutron



Table 5
Binding energies. All the energies are in eV. The calculations except when
marked with a superscript ‘a’ were done using 128 atom supercells and 27
k points

Configuration DFT–GGA:
this work

EAM: this
work

Exp.

One vacancy–one carbon atom

+0.47(1) +0.83(1) 0.41–1.1
(see text)�0.01(2) �0.04(2)

Two vacancies–one carbon atom

+0.34(1) +1.06(1) a

+0.47(2) +0.31(2)
+0.68(3) +0.90(3)

+0.58(1) +0.99(1) a

+0.12 (2) +0.77(2)

Two carbon atoms

�0.09 �0.16

�0.65 �0.50

�1.67 �0.96

�0.09 �0.11

+0.13 �0.05

+0.16 +0.05

Configuration DFT–GGA: this work EAM: this work Exp.

One vacancy–two carbon atoms

+1.07 +1.12

+1.50 +0.51

One SIA–one carbon atom

�0.19 +0.40

�0.09 +0.26

�0.31 0.08

a Calculations done using 54 atom supercells and 125 k points.

Table 5 (continued)
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irradiated Fe found by calorimetric measurements a large
binding energy (0.41 eV) of C with a defect, which they
postulated to be probably a vacancy. However, Wuttig
et al. [29] examined by magnetic measurements the carbon
and nitrogen trapping in Fe following low-temperature elec-
tron and neutron irradiation. They concluded that intersti-
tial clusters formed during the low-temperature neutron
irradiation acted as traps for carbon and nitrogen atoms,
whereas vacancies were the trapping defects following elec-
tron irradiation. Little and Harries [30] also considered that
the binding energy measured by Arndt and Damask [28]
very likely corresponded to the binding energy of carbon
to an interstitial cluster. On the other hand, Takaki and
co-workers [26] doing careful resistivity measurements in
very pure Fe and C doped Fe following low-temperature
electron irradiation estimated that the binding energy of a
carbon atom with a vacancy was 1.1 eV, while Vehanen
[31] doing positron-lifetime measurements on electron-
irradiated high purity and C doped Fe found 0.85 eV.
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Fig. 1. Carbon composition dependence of the lattice parameters of the
bcc iron martensitic phase. Cheng’s data [36] are scaled to the same origin
as our results.
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The newly derived potential reproduces fairly well the
binding energy between a vacancy and a C atom in first
and second nearest neighbour position, specially consider-
ing the scatter of the experimental results.

The configurations involving two vacancies and one C
atom are in rather good agreement except for configura-
tions b1 and c2 where the empirical potential gives too high
energies as compared to the ab initio results.

When one introduces a second C in the a-Fe matrix, the
most stable configuration appears to be when the atoms
tend to lie as far away from one another as possible. This
is consistent with the experimental observations that in
the Iron–Carbon martensite the carbon atoms are as widely
separated as possible [32]. The most repulsive configuration
(the least stable) is when the two octahedral sites contain-
ing the FIAs are on top of each other, aligned along the
shortest direction of the site, and thus along the most
dilated direction.

The newly derived potential reproduces very well the
ab initio data, in particular the trends except for configura-
tion h where the empirical potential predicts a slight repul-
sion whereas the ab initio calculation indicates an
attraction. It is important to note thus that, although the
potential has been built with the aim of studying ferritic
solid solution for low C concentrations, it models very sat-
isfactorily the interactions between two C atoms situated
not too far from each other.

The configurations involving one vacancy and two C
atoms are in good agreement with the ab initio data except
for the fact that the empirical potential is not able to repro-
duce the covalent bonding (and thus the increase in binding
energy) which appears in the case where the two octahedral
sites containing the C atoms are first neighbours [2]. This is
not really surprising as the ‘‘shape’’ of the EAM potential
cannot take into account such a covalent bonding which is
directional while the mathematical form of the potential is
completely spherical as can be seen in Eq. (1).

Takaki and co-workers [26] estimated the binding
energy between a self interstitial atom and a carbon atom
to be 0.11 eV. Earlier on, Johnson and Damask [33] calcu-
lated that an attractive binding energy of 0.5 eV existed
between the h110i dumbbell and a carbon atom. In a pre-
vious paper [2], three configurations for the interaction
between the SIA and the C atom were investigated. For
all these configurations, a repulsion was observed. This
appeared to be in disagreement with the experimental
results mentioned above, but we are far from having
explored all the possible configurations, and it is very prob-
able that when the C atom lies further away from the SIA
the interaction can be positive. When the C atom is close to
the SIA, the newly derived potential fails to reproduce the
ab initio calculations correctly as it always predicts an
attraction between the two entities, while the ab initio
indicates repulsion.

To conclude on this paragraph, the ability of the poten-
tial to reproduce ab initio results is fairly good. Let us
stress out at this point, that the potential derived with
the method described in Sections 2.2 and 2.3, can only be
used to study ferritic FeC solid solutions. Indeed, because
the scheme adopted does not take into account triplets, it
cannot reproduce the directional bonds expected when
many C atoms gather together. Furthermore, this potential
has been adjusted only on bcc configurations, and by no
means can it be expected to treat austenitic alloys.

4. Validation of the potential

4.1. Lattice parameters of the tetragonal structure

versus carbon content

The martensitic tetragonal structure provides an oppor-
tunity to test the potential as a function of increasing car-
bon content. Indeed, in the martensite, the carbon free bcc
structure of pure iron is transformed to a body centred
tetragonal structure, which lattice parameters c and a have
been proven to vary linearly with the carbon concentration.
In the bcc structure, carbon atoms remain in octahedral
sites [34], which are strongly nonsymmetrical. This causes
a considerable distortion of the crystal structure, an expan-
sion in the direction of the two first neighbours and a con-
traction in the perpendicular direction of the four second
neighbours.

Molecular dynamics simulations have been performed
with the code LAMMPS [35] keeping the number of atoms,
pressure and temperature constant (NPT) within periodic
boundary conditions with one carbon atom in a ferrite
matrix. The simulation box contained 128–2000 iron
atoms. The simulations have been run until the system
reaches an equilibrium at zero pressure. They have been
made at room temperature (300 K) to compare the results
obtained with those given by other authors. At this temper-
ature, the potential gives a lattice parameter for pure iron
(due to Ackland’s potential [22]) slightly lower (a =
0.2855 nm) than that obtained experimentally (a =
0.2866 nm). In Fig. 1, the simulated lattice parameters c

and a are plotted as a function of carbon content. They
are compared with those given by Cheng [36] from a review
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of many experimental measurements. The potential repro-
duces exactly the contraction of the lattice (parameter a),
but underestimates its expansion in the other direction
(parameter c), except for the very low carbon concentra-
tion. Nevertheless, the evolution of these lattice parameters
is linear with carbon content. This potential thus repro-
duces quantitatively (within less than 0.25% error) the
carbon induced transformation of the iron lattice from
the carbon free centred cubic structure to the centred
tetragonal structure.
4.2. Carbon diffusion in ferrite

Many important phenomena in materials science
involve the diffusion of impurities. One example is carbon
diffusion in iron. Due to its relatively high diffusivity, inter-
stitial diffusion of carbon often controls the kinetics of
phase transformations in steels and therefore the resulting
microstructure. However, interstitial diffusion may cause
problems such as strain aging, embrittlement, and steel ero-
sion. Understanding the interstitial diffusion process in iron
may help in understanding the behaviour of steel subject to
different environments.

The carbon diffusion barrier at 0 K and the diffu-
sion coefficient were calculated for different temperatures.
A conjugate gradient minimisation procedure has been per-
formed to compute the minimum energy path between
octahedral sites. As expected, the carbon site energetically
favoured is the octahedral site, as shown in Fig. 2, where
the minimum energy path is plotted. Note that the transi-
tion state (saddle point) corresponds exactly to the tetrahe-
dral site. Fig. 2 shows the minimum energy path and the
iron atomic arrangement around the interstitial carbon.
The carbon moves from the edge centre (0.0,0.5, 0.0) to
the other edge centre (1.0,0.5, 0.0) via an octahedral and
two tetrahedral sites. Note that Ruda et al. Fe–C potential
[7] returns accurate mechanical properties but finds the tet-
rahedral sites as energetically favoured, which is in contra-
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local structures of carbon atom (black atoms) in the iron matrix (light grey
atoms); initial and intermediate states (octahedral sites 1 and 2) and
transition states (tetrahedral sites).
diction with what is usually accepted or found theoretically
[2]. The value obtained for the diffusion barrier (0.85 eV) is
in good agreement with experimental values [37–39] and
quantum calculations [1,2].

In order to compare the carbon diffusion coefficient
in bcc iron with experimental data, we also determined
it for different temperatures (ranging from 850 K to
1150 K). In the NPT ensemble with 2000 iron atoms and
1 carbon atom, nmax = 2 · 107 MD steps were performed
using a time step Dt = 10�15 s (the boundary conditions
were periodic and the pressure P = 0). The diffusion coeffi-
cient was then obtained from the mean square displace-
ments using Einstein’s relation: 6Dt = hjr(t) � r(0)j2i,
where r(t) is the position of the carbon atom at time t.
The diffusion coefficient was computed from a running
average with a 20 ns window. From the knowledge of the
successive positions of the carbon atom r(tn) = r(nDt), the
mean square displacement is then given by: hj rðtÞ�
rð0Þj2i ¼

Pnmax�n
j¼0 j rððn þ jÞDtÞ � rðjDtÞj2=ðnmax � n þ 1Þ.

A run of 20 ns is long enough to obtain accurate statistics
(i.e. a sufficient carbon jump number and a linear depen-
dence of hjr(t) � r(0)j2i with time).

The diffusion coefficient follows an Arrhenius law,

D ¼ D0 expð�DQ=kBT Þ ð7Þ

where D0 is the preexponential factor, DQ the diffusion
barrier, kB Boltzmann constant and T the temperature. In
Fig. 3 the simulation results are compared with those ob-
tained by Weller [38]. We notice a good agreement between
the experimental data and the simulations. The calculated
diffusion barrier DQ = 0.85 eV is quite similar with the
one obtained from the minimum energy path at 0 K, which
is satisfactory. We also determined the preexponential fac-
tor for carbon diffusion D0 which was found to be equal
to 1.36 · 10�6 m2 s�1. This value remains within the average
of those found in the literature (D0 = 2.0 · 10�6 m2 s�1 [38],
Fig. 3. Carbon diffusion coefficient as a function of the inverse of the
temperature (1/K). The agreement between the calculated carbon diffusion
coefficient (thanks to the running average technique) and the experimental
values is remarkably good. The inset shows the projection of all the carbon
positions (in the different octahedral sites of the iron matrix) at 850 K: 40
carbon jumps from one octahedral site to another octahedral site have
been performed. This is consistent with an Arrhenius behaviour with an
activation energy of 0.85 eV.



Fig. 5. The two octahedral site types for an interstitial carbon atom, and
the direction of the uniaxial stress applied to the system. The traction axis
can be either parallel (as in the case of site 1) or perpendicular (as in the
case of site 2) to the square base of the octahedron. This square base is
itself perpendicular to the shortest distance of the octahedron.
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3.94 · 10�7 m2 s�1, 1.67 · 10�7 m2 s�1 [25]), which vary by
about one order of magnitude. Moreover, the inset in
Fig. 3 shows the carbon positions in the iron matrix: it
can be noticed, once again, that the carbon jumps from
one octahedral site to another. All these results prove that
our potential accurately reproduces carbon diffusion in
ferrite.

4.3. Effects of external stress on the diffusion barrier

Stress has a strong effect on the interstitial diffusion in
iron, due to the induced deformation of the interstitial
sites. Furthermore, interstitial diffusion may cause pheno-
mena such as internal friction, trapping of interstitial
carbon on dislocation, etc. For these reasons, the influence
of stress on the diffusion barrier has been investigated.

We first analysed the evolution of the energy barrier DQ

(using a minimum energy path analysis) with the hydro-
static pressure applied to the system. The same conjugate
gradient procedure as introduced in the preceding section
has been applied to a system of 2000 iron atoms and 1
carbon atom with various simulation box sizes, leading to
various hydrostatic pressures. Fig. 4 shows the linear
dependence of the diffusion barrier with respect to the
applied pressure. When a negative hydrostatic pressure is
applied (as in the case of traction) to the system, the diffu-
sion is faster, due to a decrease of the diffusion barrier. This
is easily understandable, as the octahedral site becomes lar-
ger and accepts more readily an interstitial atom. Inversely,
a positive hydrostatic pressure implies a slower diffusion,
due to an increase of the diffusion barrier. Note that the
negative pressure has a stronger influence on the carbon
diffusion barrier.

Secondly, an uniaxial stress state was applied to the sys-
tem, in order to study its influence on the diffusion barrier.
The simulation box dimensions perpendicular to the trac-
tion axis (stress free directions) have been adjusted by min-
imizing the system energy, to get a uniform uniaxial stress
state.
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Fig. 4. Variation of the carbon diffusion barrier as a function of the
deformation applied in each direction of the system.
It can be noticed from Fig. 5 that under uniaxial stress,
the carbon can be found in two types of octahedral sites (1
and 2) within the iron matrix. In type 1 (respectively type 2)
sites, the direction containing the two first neighbours of a
carbon atom is perpendicular (respectively parallel) to the
traction axis (see (Fig. 5)). Note that under zero uniaxial
stress state (or hydrostatic pressure), all the octahedral sites
(1 and 2) are equivalent.

However, sites 1 and 2 will have different behaviours
under uniaxial stress state. Fig. 6 shows the variation of
the diffusion barrier when a carbon jumps from an octahe-
dral site of type 1 to an octahedral site of type 2 (and
respectively from an octahedral site of type 2 to an octahe-
dral site of type 1) as a function of the applied deformation.
As for the hydrostatic pressure, the diffusion barrier varies
linearly with the deformation. Moreover, there is a energet-
ically favoured site depending on the applied stress
(traction or compression): site 1 is favoured under com-
pression and site 2 is favoured under traction. Indeed, the
two first neighbours of site 2 are moved aside under trac-
tion, leaving more space for the carbon atom.

Under uniaxial stress, the carbon atoms are no longer
equally distributed in octahedral sites, this leads to an
anelastic deformation, which can be measured in the so-
called internal friction experiment, in which a cyclic uniax-
ial stress is applied and the carbon induced cyclic strain is
determined [40]. By knowing the energy barrier variation as
a function of applied stress, the present potential could
thus be very useful to model the Snoek peak observed in
internal friction experiments.
4.4. Interaction of C atom with a screw dislocation

In bcc metals, 1/2ah111i screw dislocations are believed
to control the low temperature plastic deformation because
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Fig. 6. Variation of the carbon diffusion barrier to jump from an octahedral site 1 to an octahedral site 2, respectively from an octahedral site 2 to an
octahedral site 1 as a function of the deformation applied to the system during an uniaxial stress test. The inset shows the minimum energy path for the two
extreme deformations.

Fig. 7. Relaxed configuration of an ‘‘easy’’ screw dislocation core using
Vitek’s differential displacement method [41]. The mathematical position
of the core is indicated by the plus sign. The length of an arrow is
proportional to the displacement difference. The longest arrow corre-
sponds to b/3 and arrows shorter than b/20 are omitted for clarity. The
different sphere colours indicate on which {111} plane the atoms lie.
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their mobility is lower than that of edge dislocations.
Therefore, it is of great interest to determine the activation
energy required to move a dislocation. This energy barrier
might be modified by defects in the crystal, and particularly
by carbon in very dilute steels.

The core structure of the 1/2ah111i screw dislocation in
a-Fe has been examined using the differential displacement
method [41] representation for atomic differential displace-
ments. Let us recall that there are two possible configura-
tions for 1/2ah1 11i screw dislocations in bcc materials,
corresponding to the so called ‘‘easy’’ and ‘‘hard’’ configu-
rations [42]. The ‘‘easy’’ configuration was found to be more
stable with our potential (for pure bcc Fe) than the ‘‘hard’’
one [43] and all ‘‘hard’’ screw dislocations thus relaxed into
an ‘‘easy’’ one (Fig. 7). Note that the core is compact in
agreement with ab initio results rather than exhibiting a
degenerated core, asymmetrically spread in the three
{11 0} planes of the [111] zone very often predicted by
empirical potentials for Fe (usually referred to as threefold
symmetry).

In the calculations, the bcc lattice is oriented such that
the first axis lies along the ½�1�12� direction, the second one
along the ½1�10� direction. Along the [111] direction (which
is parallel to the dislocation line) periodic boundary condi-
tions were applied. Free surfaces have been imposed in the
other directions to avoid self-interaction of the dislocation.
The screw dislocation line was placed at the geometric cen-
tre of a triangle and because of its long-range interaction
with surfaces, the simulation box used was a cylinder of
39,060 atoms, which axis was parallel to the dislocation
line, 27 ~b long, and which radius measured approximately
16 ~b. Note, that another simulation made using a larger
box containing 90900 atoms, i.e. 30 ~b long and with a
radius of 28 ~b did not predict any significant changes in
the binding energies between the screw dislocation and
the octahedral interstitial.

The binding energy between the C atom and the disloca-
tion has been determined employing molecular statics,
using the DYMOKA code, and the following formula:

Ebðscrew; octaÞ ¼ ½EðscrewÞ þ EðoctaÞ�
� ½Eðscrewþ octaÞ þ Eref � ð8Þ

where E(screw) is the total energy of the system containing
one screw dislocation, E(octa) the total energy of the
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system containing one carbon atom in a octahedral site,
E(ref) the total energy of the perfect lattice, and E(scre-
w + octa) the total energy of the system containing both
one dislocation and a carbon atom. As is the case for the
point defect interactions, a positive binding energy indi-
cates attraction between the interstitial and the dislocation.

The whole system has been relaxed using the quench
algorithm [44].

The C atoms have been introduced in the neighbour-
hood of the dislocation line, in octahedral sites, after an ini-
tial relaxation of the dislocation. Except for the three sites
the closest to the line (sites 21, 22 and 28 in Fig. 8), where
the deformation induced by the screw dislocation is severe,
Fig. 8. Labelling of the different octahedral sites investigated. The octahedral

Fig. 9. Evolution of the C–dislocation binding energy versus distance to the
relaxation and the initial position of the line (filled circle). Indeed after relaxat
difficult to visualise. The initial distance between the C atom before relaxation
energy show the final configuration of the core. The initial mathematical posi
all the sites remain very likely within an octahedral geom-
etry. In this figure, the octahedral sites are coloured
following a scheme depending on their binding energy.
A preliminary look at the results indicate that the sign of
the binding energy depends on the orientation of the
octahedral site with respect to the dislocation line. A more
thorough discussion will be presented elsewhere.

Fig. 9 represents the relaxed binding energy versus dis-
tance to the dislocation line. The final configurations of
the dislocation core is shown for each binding energy.

It is worth noting that the maximum binding energy
found here is 0.41 eV close to the value of 0.5 eV found
by Kamber et al. by use of anelastic measurements (Snoek
sites are coloured following a scheme depending on their binding energy.

line. The distance is taken between the final position of the C atom after
ion, as the core in many cases spreads out, the position of the line is more
and the line is marked by a star. The pictures associated to each binding

tion of the core is indicated by a cross.
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damping peak and the cold-work damping peak) [45].
Cochardt and co-workers [46] obtained a higher value of
0.75 eV however they used an elastic theory which thus
did not take into account the chemical part of the interac-
tion. Our results are thus in very good agreement with the
experimental data.

5. Conclusions

An Fe–C potential dedicated to the study of ferritic FeC
solid solutions for low C concentrations has been derived,
adjusted on ab initio data. Using this potential the diffusion
coefficient of C in a-Fe and the interactions of C atoms
with a screw dislocation have been determined. The evolu-
tion of the microstructure with the C amount has also been
investigated. All the results obtained with the newly
derived potential are in good agreement with the experi-
mental data. Preliminary data pertinent in the modeling
of internal friction Snoek peak have also been obtained.
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