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Modeling Tools: From the Atom  
to the Macroscopic Scale 

7.1. Introduction 

The aim of this chapter is to briefly describe different techniques used for 
modeling structures from the atomic scale to the macroscopic scale and, where 
appropriate, their surrounding environment. For each method we will provide the 
general principle, references to books for more information, strengths and limitations, 
as well as some examples of recent applications drawn from the literature. 

7.2. The atomic scale 

Atomic scale simulations describe the material as a set of atoms and so the main 
element for simulations at this scale is the description of interactions between the 
atoms, or more commonly, knowing the dependence of the system’s total energy on 
their positions. The accuracy of the atom interaction model greatly affects the quality 
of the results while its complexity determines the computation time necessary to obtain 
the result. The model is therefore always chosen by reaching a compromise. 

The interaction potentials can be established using quantum mechanics and 
electronic structure calculations. However, this type of calculation, known as ab 
initio, is very expensive due to the computing time, and its use in an atomic-scale 
simulation code is only possible for small systems (at this time, a few hundred atoms 
to a thousand). In order to simulate systems with more particles, approximated 
solutions of these potentials are used (empirical or semi-empirical potentials), and 
adjusted to physical properties of the studied material. 
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7.2.1. Cohesive models 

7.2.1.1. “Ab initio” methods for materials: density functional theory 

The so-called “ab initio” methods, which allow us to determine the electronic 
structure of an assembly of atoms, a priori arbitrary, have seen their field of 
application grow in material sciences thanks to the constant improvement of 
computational power and the theoretical developments which have occurred over the 
last three decades. In contrast to the so-called empirical and semi-empirical 
methods, these methods don’t require any adjustments to describe the interaction 
energy between atoms. They are not rigorously precise since they are based on a 
number of approximations, more or less well controlled depending on the case. The 
common goal of all ab initio techniques is to solve the Hamiltonian (i.e. calculate 
the energy) in a system of Na atoms and Ne electrons. This is an N-body problem 
which can only be solved using a number of approximations. At zero order the 
Born-Oppenheimer approximation, or adiabatic approximation, is used, which 
consists of decoupling the movement of the nuclei from that of the electrons. This 
approximation is justified by the fact that the nuclei’s mass is three orders of 
magnitude larger than that of the electrons and so the electrons are at all times in the 
ground state, which corresponds to the nuclei’s current position. In practice, this 
enables us to define the interaction energy between the atoms, which is none other 
than the electronic energy of the ground state associated with the nuclei’s spatial 
configuration. 

In works focusing on solids, the approach used is generally based on the density 
functional theory (DFT). In this approach, the energy of the ground state E is solely 
expressed as a function of the electron density. It was only after the work of 
Hohenberg and Kohn [HOH 64] and Kohn and Sham [KOH 65] in the mid-1960s 
that the DFT made it possible to deal realistically with the N-body problem. Kohn 
and Sham’s method (KS) makes it possible to express the electron density as the 
sum of squares of pseudo-monoelectronic wave functions that must verify the KS 
equations (a simplified set of Schrödinger equations) that can be numerically solved. 
A Hartree term appears in these equations, which is easily expressed according to 
the density, and an exchange-correlation term which we cannot evaluate in the 
general case. Nevertheless, this quantity can be determined if we approximate the 
electron gas by a homogeneous gas of density n0 (LDA, Local Density 
Approximation). However, the atomic or molecular systems are far from being a 
homogeneous electron gas and so we must consider functionals that involve the 
density gradient (GGA, Generalized Gradient Approximation). Other refinements 
have been developed such as hybrid exchange-correlation functionals or Hubbard 
corrections (LDA + U) to describe highly correlated systems. For more details on 
the DFT, please refer to [PAR 89]. 
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These methods make it possible to calculate a very large number of physical 
properties (accessible or not to the experiments) with precision and confidence. 
They are increasingly used to generate data for the development of empirical 
potentials or cluster expansion models that provide a formalism for the construction 
of Hamiltonians based on the interaction decomposition in pairs, triplets, 
quadruplets, quintuplets, and so on [SAN 84]. 

The DFT limitations are, on the one hand, the size of the system: at present we 
are able to deal with workstations of a few tens of atoms, with this value sometimes 
reaching a few hundred or even a thousand atoms using calculation codes on 
massively parallel machines; and on the other hand, the fact that the calculations do 
not account for the temperature. It is possible to carry out a few hundred (thousand) 
molecular dynamic (MD) iterations (see next section) using the so-called  
Car-Parrinello technique [CAR 85], which in principle enables taking into account 
the effects of the temperature. 

7.2.1.2. Empirical potentials or force fields 

The interatomic interaction potential is a function V(r1, r2, ....) of the nuclei 
positions which represents the potential energy of the system. This function is 
invariant with respect to translations and rotations and is generally constructed from 
the relative positions of the atoms rather than from their absolute positions. The 
forces on the atoms are then obtained by calculating the potential gradient with 
respect to the atomic displacements. 

The development of these potentials is done in two steps: 1) the analytical form 
of the function, which contains adjustable parameters, is chosen (which often 
depends on the type of bonds involved); 2) these parameters are adjusted to a 
number of wisely chosen physical properties – cohesive energy, elastic constants, 
vacancy formation energy, surface energies, interface energy, phonon spectrum, 
pressure-volume relation, etc. – according to the area of application. 

The force field chosen depends on the type of bonds involved in the material we 
wish to simulate. Thus, Lennard-Jones potentials are typically used for van der 
Waals-type interactions; the Embedded Atom Method (EAM) potentials are used for 
metallic interactions and Buckingham's potentials [BUC 38, LEW 85] and variable 
charge potentials [DEM 99] are used for ionic bonds. For covalent materials, a 
distinction is usually made between reactive and non-reactive potentials. The 
reactive potentials are capable of describing chemical reactions involving bond 
breaks or the formation of new bonds. These include ReaXFF potentials [VAN 01] 
which are likely to describe a large number of reactive systems. Alternative potential 
building methods based on “machine learning” are being developed. They adjust the 
potential on a very large number of atomic configurations obtained using “ab initio” 
calculations [BEH 16]. 
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One of the recurring problems of these potentials is their transferability 
irrespective of the construction method chosen, in other words, their ability to 
correctly model the material chosen under conditions far from the conditions used 
when adjusting the parameters. Thus, it is not at all guaranteed (it is moreover rarely 
the case) that a potential adjusted, for example, for the equilibrium properties of CC 
Fe can be used to model FCC Fe. In the same way, will a potential only adjusted for 
the elastic properties of a material give satisfactory results in studies involving 
diffusion or dislocation slips? 

To describe atomic bonds we can use, from the most complex to the simplest, a 
quantum mechanical approach, or empirical models which are validated on a certain 
number of relevant properties. It should be noted, however, that there are 
intermediate techniques between these two extremes such as the strong bond 
technique, which is a calculation of the electronic band structure using a  
semi-empirical set of wave functions based on the superposition of wave functions 
for isolated atoms located at each atomic site. 

In the case of hydrogen embrittlement, the stability and structure of complexes 
containing a few vacancies and some hydrogen atoms in iron [HAY 13] and their 
mobility can be determined by DFT, for example. However, to study the role of 
hydrogen on the plasticity, it will be necessary to use empirical potentials and classic 
MD such as in [LI 15]. Similarly, the structure and geometry of possible corrosion 
inhibitors can be studied by DFT; however, to model the interaction of the inhibitor 
with a surface, it is often necessary to use classical MD and force fields. This is the 
approach followed, for example, by Saha et al. [SAH 16] in the case of the protection 
of steels by N-heterocyclic organic compounds. The two approaches are also 
complementary; the “ab initio” calculations enable us, for example, to determine the 
property values for which the empirical potentials need to be adjusted. Thus, in the 
case of the Mo-Tc alloy, the E/pH diagram of the Tc-O-H system was developed using 
“ab-initio” calculations coupled with the resolution of the Nernst equations for the 
possible reactions between Tc and its corrosion products. The data obtained this way 
then made it possible to develop an empirical potential finally used in conjunction with 
an atomic Kinetic Monte Carlo (KMC) method to study the surface dissolution 
mechanisms according to its orientation and composition [KIM 13]. 

7.2.2. Molecular dynamics 

In MD we have access to thermodynamic averages of a particle system by taking 
the average of individual trajectories. The method consists in solving the Newton 
equations for each atom i of the crystal. In the most common case and for particles 
interacting through central forces, the degrees of freedom are reduced to the centers 
of mass’ coordinates and the equations of motion of N coupled Newton equations: 
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where ijf


 indicates the force exerted by particle j on particle i. The total force 
exerted on atom i by the other atoms is given by the gradient of the interatomic 
potential with respect to the position of the atom. ir

  is the second derivative with 
respect to the time of the position vector of atom i with mass m. 

The integration of the equations of motion must be done numerically by 
choosing a finite time step dt and by approximating the differential equations with 
finite difference equations. Thus, at time t, simultaneously, for a system of N 
particles, N classical equations of motion i i if = m r

   are solved. From these 
calculations the computer predicts the new positions for all the particles at time t + 
dt, their new speeds and the new forces. It is thus possible to trace the behavior of a 
material or rather a submicroscopic part of a material. 

Molecular dynamics is therefore a fully deterministic method: the trajectory of 
the atoms is completely determined by the initial conditions. The classical MD 
calculation reproduces the properties of the microcanonical ensemble (or NVE 
ensemble). To be very precise, while Newton's classical equations of motion 
conserve the energy and the total momentum of the system (when there are no 
external forces applied), MD actually explores a subsystem of the microcanonical 
ensemble. For ensembles other than the microcanonical ensemble, the Newton 
equations are modified to sample the desired ensemble. Time averages similar to 
those made for the NVE ensemble are therefore obtained. 

The size and time scales are of the order of a few hundred nanometers, and from 
a few picoseconds to a few nanoseconds depending on the case study and the 
cohesion model (DFT or empirical potential) [PAY 92]. The information obtained 
can be used as such (e.g. dislocation propagation rate and stress associated with the 
application of a deformation, number and arrangement of defects created by 
irradiation) or as starting data for larger scale calculations (finished elements, for 
example). 

The details of the method’s principles and examples of programs can be found, 
for example, in [ALL 89]. A list of public software is given in [BEC 10]. 

From the corrosion study’s point of view, MD using a very recently developed 
empirical potential has enabled, for example, the highlighting of the formation of  
a double layer at the iron-water interface [FER 16]. Another recent example is the 
demonstration of the increased resistance of Zr’s basal surface (0001) to oxygen 
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diffusion compared to the prismatic surface (10-10) [NOO 14]. Molecular dynamics 
can also be used to determine the input parameters of higher scale models. Thus, a 
recent study combining MD and cluster dynamics on the role of hydrogen has 
shown that during plastic deformation, a very large number of hydrogen-vacancy 
complexes could form and that would act as embryos for the formation of  
nano-cavities which are experimentally observed in hydrogen-embrittled steels [LI 15]. 

7.2.3. The Monte Carlo methods 

The so-called Monte Carlo (MC) techniques, derived from statistical physics, have 
found many applications in materials science. The MC name comes from the fact that 
this method uses random numbers similar to those involved in games of chance. The 
use of sampling techniques is not recent, but the contribution made by Von Neumann 
and Ulam was to realize that deterministic mathematical problems (such as integral 
evaluation) could be solved by finding a probabilistic analogy which could then be 
solved using a random sampling technique [ALL 89]. In principle, only equilibrium 
situations can be studied using the classical Monte Carlo Metropolis algorithm  
[MET 53]. The underlying idea is to randomly generate microscopic configurations 
according to an equilibrium distribution known in advance (usually the canonical 
distribution, but sometimes also the grand canonical, etc.). In certain specific cases, 
when the microscopic mechanism that allows switching from one configuration to 
another is known, it is possible to introduce time into a Monte Carlo simulation. We 
are therefore dealing with the so-called kinetic Monte Carlo (KMC) algorithms. These 
algorithms are particularly well suited to study diffusion in solids. 

7.2.3.1. MC Metropolis 

The Metropolis algorithm can generate microscopic configurations from a given 
initial configuration. The new configurations are generated in accordance with a 
probability law that often corresponds to a thermodynamic equilibrium distribution 
although this is not necessary in principle. In the case of the original Metropolis 
algorithm [MET 53], the probability law that generates the configurations is the 
canonical distribution. 

From the practical point of view, it is assumed that the microscopic 
configurations S0, S1, ... Si-1, Si have been generated and so the next Si + 1 
configuration is what interests us: 

– all the accessible configurations following the Si configuration are determined; 

– one of these configurations S'i + 1 is randomly chosen; 

– the energy of this new configuration is then compared to that of the previous 
one, that is, ( ) ( )i+1 iΔE = E S E S ,′ −  
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– if ΔE 0≤ , the new configuration is retained and Si + 1 = S'i + 1 is obtained; 

– if ΔE > 0 , the new configuration is accepted with the probability ( )kT
EΔ−exp

where T is the temperature and k the Boltzmann constant. 

Thus, at each MC stage a single energy difference must be calculated, which, if 
the configurations are “topologically” close, can be evaluated quickly from a 
numerical point of view. But this algorithm is not very effective when the 
temperature decreases or when transition temperatures are getting closer. It should 
be noted that the Metropolis MC methods are often easier to implement than MD, 
but they do not generally provide access to the dynamic properties of the systems 
being studied. In order to obtain the reaction kinetics, a combination of the two 
methods is required as done by [KHA 09] to study the action of certain amino acids 
on the inhibition of mild steel corrosion in a sulfuric acid medium, or resort to the 
methods known as kinetic Monte Carlo. 

A more accurate and detailed description of the method can be found in [ALL 89]. 

7.2.3.2. Kinetic MC at the atomic scale 

In the Metropolis algorithm, at first glance, no “proximity” relation exists 
between the two successive configurations, Si and Si + 1. If, on the other hand, we 
are interested in the spatial configurations generated over time during a diffusion 
process, we notice that the chronological order of appearance of each new 
configuration is not arbitrary. Indeed, two successive micro-states differ only in the 
position of the diffusing defect (vacancy or interstitial for example) and which has 
moved by a jump length between the two configurations. 

The random walk theory enables us to easily show that the probability for the 
residence time tres of a defect in a site i to be t (knowing that the defect has arrived at 
the site being considered at t = 0) follows a Poisson Law ( ) ( )υ−υ== texpttP res

where υ is the jump frequency. This relation is obtained by assuming that at any 
time t, the probability that the defect leaves its site between t and t + dt is υdt. The 
Vineyard transition state theory [VIN 57] gives an expression for υas a function of 
microscopic parameters (activation/migration barriers and vibration frequencies). 

The residence time algorithm [YOU 66, BOR 75] is based on the above 
considerations. From a given configuration, Si, all the possible successive 
configurations j

i+1S obtained are determined by moving the defect, which diffuses 
from a jump length in each of the possible jump directions, each jump being 
performed with a jump frequency ijΓ . 
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Then, a jump among the possible jumps remains to be chosen and this is done by 
juxtaposing the jump frequencies along a segment and a random number ζ is chosen 
between 0 and ij

j
Γ . The selected jump, k, is the one that verifies the relation 

k 1 k

ij ij
j=1 j=1

Γ ζ < Γ
−

≤  . Thus, k
i+1 i+1S = S and the average time step Δt associated with 

residence in site i can be approximated by
Γ

=Δ
j

ij

1t . The macroscopic time 

accessible by the KMC is large. 

Thus, for example to model the evolution of a group of vacancies, it can be 
assumed, such as in Young and Elcock’s model [YOU 66], that the diffusion is 
carried out through vacancy jumps onto neighboring first sites according to a 
thermally activated process with a frequency: 

exp ia
i , j

E
kT

Γ ν
  = − 
  

 [7.2] 

ν is the attempt frequency which is supposed to be independent of the alloy 
configuration, Eai is the activation energy, that is, for an atom, the energy necessary 
to arrive to the saddle point. 

Atomic kinetic Monte Carlo has been used extensively to study precipitation 
phenomena [BEC 18], and phase transformations. 

For example, from the corrosion point of view, atomic kinetic Monte Carlo has 
been recently used to model the formation of crevices on a (100) surface of pyrite 
(FeS2) [HER 14] as a function of the temperature and in a reducing environment, the 
dissolution of the Fe-Tc [TAY 13] or Mo-Tc [KIM 13] systems or the formation of 
an oxide film on metal surfaces [DIA 10]. On the other hand, a review article on 
atomic scale modeling (ab initio, DM and KMC) of corrosion mechanisms is found 
in [TAY 12]. 

7.3. Mesoscopic scale 

7.3.1. Object Kinetic Monte Carlo (OKMC) 

As a generalization, the method described above can be applied not only to 
vacancies, but also to “objects” (vacancies, vacancy clusters, dislocation loops, 
interstitial clusters, etc.). The objects can be subjected to different types of events: 
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jumps, dissociation, agglomeration, etc. The jumps or dissociations are considered 
thermally activated processes characterized by an activation energy Ea,n i and an 
attempt frequency in ,ν . The occurrence frequency (incorrectly referred to as 

“probability”) Γn,i (of the object n and the reaction i) is then given by: 








−ν=Γ

kT
E

exp i,n,a
i,ni,n   [7.3] 

The objects can move on a rigid network or not according to the residence time 
algorithm. During the simulation a number of events can arise with a certain 
probability which is given by the often incorrectly named occurrence frequency. The 
types of events that objects can experience are: 

– migration: a mobility governed by an Arrhenius law is associated with defect 
clusters. This mobility depends on their size and nature; 

– the recombination between two objects. In the case where the objects are of 
the same type (vacancies or interstitials), the result of the recombination is an object 
of the same type but larger. When objects are of different types, recombination leads 
to the formation of a smaller final object of the same type as the largest initial 
object. Objects of different types and identical size are annihilated; 

– the dissociation (when the object is sufficiently large and the dissociation is 
authorized) by emission of an entity; 

– the interaction/trapping by impurities (C, N, etc.) or elements belonging to 
the microstructure such as dislocations, grain boundaries, etc.; 

– annihilation on free surfaces. 

Tohgo et al. [TOH 09] used this type of approach to develop a method for 
modeling the initiation and coalescence of microcracks; this method has also been 
recently used by Fujii et al. to study the stress corrosion of high temperature 304 
steel in an aqueous environment [FUJ 15]. 

7.3.2. Cluster dynamics or chemical kinetics 

Cluster dynamics, sometimes referred to as chemical kinetics, is a mean-field 
approach, very similar to object kinetic Monte Carlo, where only the evolution of 
cluster concentrations is considered. The evolution of these concentrations is 
governed by a system of coupled differential equations which describe both the 
growth and the dissolution of clusters due to reactions with mobile or solute defects, 
emission of these same species, and cluster coalescence if the clusters are mobile. 
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Cluster dynamics is a widely used method for modeling materials under 
irradiation and a typical example is the study of the formation of helium or hydrogen 
bubbles in structural materials such as tungsten or iron and the impact of stress on 
their growth as in [SHA 09]. 

7.3.3. The phase field method 

The phase field method is a powerful numerical approach to modeling the 
evolution of material microstructures at the mesoscopic scale. It was initially used to 
solve all kinds of problems in materials science such as solidification and solid-state 
phase transformations. For example, in the latter case, it not only provides access to 
the size of the precipitates, their morphology but also their layout. In fact, the phase 
field method can be applied to the study of any chemical or structural heterogeneity 
that may appear in materials: dislocation loops, grain boundaries, cavities, bubbles, 
etc. This is the reason that has enabled it to be generalized for the study of the 
evolution of dislocations, crack propagation, microstructures under irradiation, etc. 
Moreover, given its mesoscopic nature, it fits naturally into multi-scale coupling, 
requiring input data computable by atomic approaches: elastic constants, interface 
energies, mobilities, lattice misfit, etc. When calculating a microstructure, it can 
provide input data to determine macroscopic properties such as porosity, thermal 
conductivity, etc. 

The development of a phase field model is generally divided into three steps: 

1) defining one or more variable fields that depend on time and which are 
referred to as order parameters (OP). Whatever their number, they must be chosen in 
such a way that knowledge of their value at any point in space r at a given time t 
allows the complete description of the microstructure. There are two types of order 
parameters: 

- the conserved order parameters, denoted ci(r,t), and which are referred to as 
such because they obey a conservation law. This is for example the case of an 
atomic fraction of solute in an alloy where the evolution is governed by a diffusion 
equation. 

- the non-conserved order parameters, denoted ηj(r,t), which do not obey any 
conservation equation, such as the long-range order parameters characterizing the 
crystallinity of a phase or the orientation of a grain. 

A key point is that these fields take definite volume values, and that they 
continuously vary between these values through diffuse interfaces. In this approach, 
interface tracking is naturally taken into account with the resolution of the OP’s 
evolution equations, which avoids the heavy numerical treatment often required by 
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approaches based on steep interfaces. The phase field method is thus able to 
simulate complicated microstructures such as dendrites; 

2) the second step consists of expressing a thermodynamic potential, F, as a 
function of the OPs defined above; this potential by definition reaches a minimum at 
equilibrium. It generally includes two contributions: an FSR contribution that 
integrates short-range chemical interactions and an FLR contribution that integrates 
long-range interactions (elastic, magnetic, etc.): 𝐹 = 𝐹ௌோ + 𝐹௅ோ [7.4] 

𝐹ௌோ =  ∭ [𝑓௛௢௠൫𝑐ଵ, … , 𝑐௡,ଵ, … ,௉൯ + ∑ ఈ೔ଶ௡௜ୀଵ (𝑐௜)ଶ + ∑ ೕଶ௣௝ୀଵ (௝)ଶ]𝑑𝑉௏   [7.5] 

fhom is an energy density that incorporates short-range interactions while the 
gradient terms, non-zero only at the interfaces, may be related to the interface 
energy. αi and βj are the stiffness coefficients. FLR is usually more difficult to 
calculate. In the case of elastic interactions, each element of the microstructure 
(dislocations, precipitates, cracks, etc.) is assigned its own eigenstrain tensor (misfit 
between the lattice parameters of two different phases in the simplest case) which 
will generate an elastic field. This field interacts with the elastic deformations 
induced by the other microstructure elements. The elastic interactions can be 
determined analytically in the Fourier space according to the methodology 
developed by Khachaturyan [KHA 83]. The great diversity of phase field models 
seen in the literature arises from the different contributions used to describe the 
potential F; 

3) the final step is to calculate the system’s kinetic evolution using the  
Cahn-Hilliard equation [CAH 58] for the conserved parameters and the Allen-Cahn 
equation [ALL 72] for non-conserved parameters: 

௖೔
௧ = 𝑀௜ ଶ ி

௖೔ ; ೕ
௧ = −𝐿௝ ி

ೕ [7.6] 

Where Mi and Lj are mobility tensors obtainable through calculations at the 
atomic scale. 

The phase field method is used to solve all kinds of problems in materials 
science such as solidification, solid-state phase transformations, growth and 
coalescence, dislocation microstructure evolution, crack propagation and the 
evolution of microstructures under irradiation. For the more curious reader we 
recommend, for example, the article by Singer-Logovina and Singer [SIN 08], 
Chen’s article [CHE 02] or Bellon’s chapter [BEL 12]. 
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The limits are related to the mesoscopic nature of the phase field models, which 
cannot be substituted for atomic methods to obtain certain data already mentioned 
above (interface energies, dislocation core, etc.). In addition, time and space scales 
are usually too large to handle nucleation in the right way, but too small compared to 
macroscopic scales. It is therefore necessary to combine phase field models with 
higher scale models. 

From the corrosion point of view, this method, which allows the environment, 
the stresses and the microstructure to be easily taken into account, has been used to 
study different types of corrosion: stress corrosion [NGU 17, STA 15], pitting 
corrosion [MAY 16], V2O5 corrosion [ABU 15], etc. 

7.3.4. Dislocation dynamics (DD) 

The purpose of dislocation dynamics models is to simulate the collective 
behavior of dislocation lines in interaction. In this sense, these models are close to 
MC codes that do not simulate all the atoms in the crystal lattice, but rather each of 
the linear defects, that is the dislocations. 

7.3.4.1. The models 

The first models were constructed in 2D [FOR 67, VAN 95] and the first 3D 
models appeared in the 1990s [KUB 90]. At present about 10 codes have been 
developed around the world including the French codes mM [LAB 11], the 3D 
Discrete Dislocation Dynamics code [NUM 18b] and the Numerical Model for 
Dislocations [NUM 18a]; the US codes ParaDis [MIC 18], the Multiscale Dislocation 
Dynamics Plasticity code [CMM 18], Paranoid [SCH 99], PDD [GHO 00]; and the 
German code from [WEY 02]. Although there are some differences between these 
codes, the general principle is similar and is based on three stages: 1) discretization of 
the dislocation lines into elementary entities; 2) calculation of the line mobility from 
the interaction forces; 3) management of the events arising during the line movement. 

Let us look at them in detail: 

1) For the line discretization, two large families of discretization models are seen:  

i) the screw-edge model [NUM 18b] and its extended version: screw-mixed-
edge [LAB 11, MAD 01] for which the lines are cut into elementary segments where 
the orientation defined by the angle between the line and the Burgers vector is 
arbitrarily fixed;  

ii) the nodal codes for which the dislocation lines are built on support nodes 
[MIC 18, CMM 18, NUM 18a]. In these nodal codes, the dislocation lines are  
made up of segments in any orientation linking two nodes; however, some more  
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elaborate models propose descriptions in terms of cubic spline functions [GHO 00] 
which have the advantage of preserving the continuity of the derivative in each 
node. 

2) The dislocation theory is applied for the calculation of the interaction forces 
and the mobility law [FRI 64, HIR 82], which is established within the linear 
elasticity setting, although dislocations are the plasticity propagation vectors. The 
dislocation lines are comparable to elastic inclusions immersed in a matrix which is 
also elastic. They interact with each other through the stress fields they create in the 
simulated environment. 

In the linear elasticity theory setting, the effective stress tensor effσ can be 
evaluated at any point of the crystal resulting from the superposition of the applied 
stress tensor appσ with the tensor of the internal stresses intσ  generated by the 
dislocations. The force per unit length generated by this stress field on a segment of 
the unit line vector dl and the Burgers vector b is calculated using the  
Peach-Koehler formula [PEA 50]: 

( ) dlbσσdlbσF ∧+=∧= .. int
PK

appeff                [7.7] 

We deduce the effective shear stress, τ resolved on the slip-plane of the segment 
by projecting this force along the normalized flight direction g and the climb 
component σn pushing the dislocation outside its slip-plane by projecting along the 
slip-plane normal n: 

PK1 .
b

τ = F G     ;    PK1 .n b
σ = F n  [7.8] 

The segment mobility is then calculated from these components. The simplest 
case adheres to the following linear relationship: 

bv
B

τ=  [7.9] 

for which the viscous friction coefficient B models the dissipations due to the 
interactions with the phonons. This law is generally used to simulate face-centered 
cubic materials. For other crystallographic structures, such as centered cubic (CC), 
the mobility law strongly depends on the dislocation’s temperature and nature. Thus, 
the double-kink mechanisms that make it possible to move the screw dislocation of  
a Peierls valley to the next, are modeled by analogy with the elastic cord theory 
[DUE 69, LOU 79] using the following thermally activated expression: 
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2
expD *

b G( )v L
kTl

Δ τν   − =      
 [7.10] 

where νD is the Debye frequency, L the length of the dislocation considered, l* the 
length of a stable double kink, k the Boltzmann constant, T the temperature and 
ΔG(τ) the activation energy. This energy is usually determined from temperature 
jump tests. A phenomenological expression often used is Kocks’ law [KOC 75]: 

0
1

qp

vG( ) H τΔ τ Δ
τ

   = −     
 [7.11] 

Expressions [7.9] and [7.10] are conservative mobility laws that consider 
dislocations to move in their slip-plane defined by the plane containing the line and 
its Burgers vector. When diffusion phenomena are introduced, such as, for example, 
a high temperature or irradiation flux, the velocity vector may have a  
non-conservative component outside the slip-plane which depends on the vacancy 
concentrations diffusing on the dislocation lines [MOR 08, KER 15]. Ideally, the 
vacancy concentration at any point in the simulated volume would then be estimated 
by solving the diffusion equations, for example by a finite element method [LIU 17] 
or using FFT techniques [GAO 17]. 

3) For managing the events, a DD code must be able to take care of all possible 
collision events during the dislocation segment displacement. When a dislocation 
segment of length L moves on a given slip system, it sweeps a flight area dA = 
L.v.dt which increases the cumulative plastic deformation on this system according 
to Orowan’s equation: dγ(s) = b.dA/V from which the whole plastic deformation 
tensor is reconstructed. 

If the segment encounters another dislocation, the different possibilities of 
creating a junction resulting from the recombination of the dislocation lines must be 
considered. The segment may also encounter a grain boundary, a precipitate or any 
other limit condition that must be managed through local rules. 

Dislocation Dynamics codes manage time scales and intermediate spaces 
between atomic (MD) and continuous (FE) models. In fact, DD is a particularly 
interesting tool for multiscale modeling, widely used in a bottom-up approach, for 
example to determine constitutive laws which are reliable at the macroscopic scale, 
and can be used by finite element techniques or when studying the mechanical 
behavior of confined environments. Nevertheless, the model has limits that are 
difficult to get around. The first limitation concerns the computation time which can 
quickly become prohibitive as soon as the number of dislocation segments becomes 
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too large. In fact, unlike atomic simulations (see section 7.1.2), the number of 
degrees-of-freedom to be managed during a DD simulation increases with plastic 
deformation due to the lengthening of the dislocation lines that bend and multiply 
under the effect of the applied stress. The direct consequence is that the computation 
time required to perform a simulation step increases more and more. This is partially 
remedied by deploying the code on parallel architectures and the challenge is 
therefore to build a parallel code with very high scalability [MIC 18]. Another 
important limitation of DD models is the taking into account of large deformations. 
In fact, all the DD codes assume that the network on which the dislocation lines are 
moving is rigid while in reality, the dislocation displacement disrupts the position of 
the entire solid domain located each side of its flight area. Therefore, the collective 
movement of thousands of dislocations causes a distortion of the crystal lattice that 
cannot yet be taken into account because it would require updating the orientation of 
the crystal lattice and managing the jogs printed on the intersecting dislocation lines. 

A reference work for this method is the book by Bulatov and Cai [BUL 06]. 

Many corrosion studies have been conducted using 2-D DD. A first application 
of the 3-D DD was able to quantify the effect of hydrogen on the dislocation 
movement [GU 18]. 

7.4. Macroscopic scale: crystal plasticity 

At the macroscopic scale, the material is seen as a continuous medium. The finite 
element method based on this hypothesis makes it possible, by discretizing the 
geometry, to obtain the approximate solutions of the partial differential mechanical 
and physical equations. The polycrystalline heterogeneities of the metals are taken 
into account through the specific constitutive laws of crystalline plasticity based on 
the fact that plastic strain results from dislocations slipping under the effect of an 
applied stress. Crystal plasticity is the name given to the modeling at the continuous 
scale for which the constitutive laws are written by slip systems, as opposed to the 
“von Mises” plasticity models which do not make this distinction. 

7.4.1. The models 

7.4.1.1. Slip systems 

We have seen in Chapter 1 that dislocations are linear defects that move in the 
crystal’s dense planes and propagate a displacement called the Burgers vector, b. 
This vector shears the crystal by translating the upper part relative to the lower part 
of the plane containing the dislocation. The Burgers vector is therefore contained in 
the slip plane and the plastic deformation generated by the movement of the 
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dislocation line is a pure shear that occurs at constant volume. A slip system is 
therefore defined by the (b,n) couple where n is the dislocation’s slip-plane normal. 
Thus, for the face-centered cubic (FCC) structures, there are four dense planes of the 
{111} family and six Burgers vectors of the a/2 <101> family, where a is the 
crystal’s lattice parameter. There are therefore 12 slip systems (often identified using 
the Schmid and Boas notation). For each dense plane of the FCC network, there are 
three coplanar systems, that is, three possible shear directions within the same plane. 
Similarly, each Burgers vector is shared by two slip planes. Thus a dislocation may 
potentially change its slip plane. The only requirement is that the line direction is 
contained in the two slip planes, forcing it to be oriented in the Burgers vector 
direction [110] and thus implies that it is a screw dislocation. The direct 
consequence is that a screw dislocation of the FCC network can change its slip 
plane, which is the cross-slip mechanism. 

7.4.1.2. Crystal plasticity formulation 

The classical crystal plasticity models often rely on a multiplicative 
decomposition of the transformation gradient into an isoclinic plastic part and an 
elastic part according to the approach proposed by J. Mandel [MAN 71]. The details 
of the crystal plasticity tensor formalism are beyond the scope of this book, but the 
reader is invited to read S. Forest’s continuum mechanics course available on the 
Ecole des Mines de Paris website. 

The key point of the tensor formulation relates to the constitutive law connecting 
the stress tensor to the deformation tensor. 

In the next two sections, we present two main families of constitutive laws 
available for FCC structures: physically based laws for which each equation is based 
on local dislocation movement considerations and a much simpler set of 
phenomenological laws which have proved to be very efficient for modeling 
complex behaviors. More details on the differentiation of the various equations are 
available in the journal article [FIV 04]. 

7.4.1.3. Physically-based crystal plasticity laws 

Considering the landscape of shear stresses applied on a dislocation moving on a 
slip system s, we can split the stress actually perceived by the dislocation while in 
motion into a long-range athermal component s

μτ , and a thermally-activated 

component s*τ , reflecting the local obstacles that must be overcome by the 
dislocation in order to progress: s s *s

μτ τ τ= + with *s s
μτ τ<< . By neglecting the 

flight time of the dislocation before its waiting time on the obstacles, its speed is 
written as: 
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 [7.12]  

where T is the temperature, Dν the Debye frequency, 0GΔ the activation energy at 

0K and *VΔ the activation volume. Assuming that the average velocity of all mobile 
dislocations on the system s (with density ( s )

mρ ) is written in the same form, 
Orowan's law gives the shear rate: 

 [7.13] 

If we assume that the stress applied is moderate, the probability of inverse jump 
can be neglected to only keep the positive term of sh. Finally, a limited development 
gives an expression in the classical power law: 
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It is a purely viscous flow law (with no threshold) that links the shear strain rate 
to the shear stress on a system s. 

In this equation, s
μτ  is an isotropic hardening stress that evolves with the 

dislocation density stored on all slip systems according to the formula: 

 where  [7.15] 

which involves an interaction matrix a between the systems. The system of 
equations is completed with the dislocation density evolution law which can be 
proved by assessing the different dislocation densities [FIV 04]. In this equation, K 
is the mean free path of the dislocations, d an interaction matrix similar to a and βR 
a capture radius between dislocations of opposite signs. Note that this equation 
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includes a production term and an annihilation term of the dislocation densities. As a 
result, when these two terms are equal, the dislocation density will saturate in the 
same way as the isotropic hardening stress s

μτ . 

Finally, the physically based constitutive law is completely described by this set 
of three equations. This law is classically programmed in user routines (UMAT) for 
finite element codes, which simply requires writing the derivative of the hardening 
law as a function of the strain rate: 
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to find a classical formalism of phenomenological models. 

Finally, it should be noted that this constitutive law was created by only taking 
into account monotonous loading paths, that it only comprises isotropic hardening 
and that no kinematic hardening component has been introduced. To date, there is 
no physically-based law that models kinematic hardening in a general way. Some 
developments have been made in particular cases such as piling at grain boundaries 
or oligocyclic fatigue. 

7.4.1.4. Phenomenological crystal plasticity laws 

Simultaneous to the development of these physical laws, solid state experts have 
also developed constitutive laws for single crystals taking into account the 
plasticity’s discrete nature for the different slip systems. The reader interested in a 
general view of these developments may read Asaro's review [ASA 83]. For small 
strains, the viscoplasticity flow law is written as: 

𝛾ሶ = ർหఛ(ೞ)ି௑(ೞ)หିఛ೎(ೞ)௞ ඀௡ .sign൫𝜏(௦) − 𝑋(௦)൯  where  〈𝑥〉 = ቊ 𝑥 if 𝑥 > 0 0 otherwise
  [7.17] 

In this equation, )(s
cτ is the isotropic hardening variable and )(sX the kinematic 

hardening component. Just as for the previous model, the system of equations will 
be complete if we specify the evolution of these two components. The kinematic 
hardening evolution law will have to be identified using fatigue or Bauschinger 
tests. 
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The continuous plasticity models presented above have a relatively large number 
of applications. The physically-based models are, at present, limited to isotropic 
hardening cases and still have difficulty simulating kinematic hardening. On the 
other hand, the simplified model has demonstrated its ability to simulate fatigue tests 
through the precise identification of kinematic hardening laws. These two groups of 
models can be used for corrosion studies if we add diffusion equations modeling the 
distribution of the concentrations of the different envisaged elements to the 
viscoplasticity constitutive laws. For example, the macroscopic multi-physics 
approach is used to determine the background hydrogen concentration in finite 
element calculations [KRO 99] which will be discussed in more detail in Chapter 18. 

7.5. Conclusion 

The different techniques presented here are complementary and which one is 
selected strongly depends on the problem to be dealt with, the mechanisms to be 
modeled and the amount of detail required for the elementary mechanisms. Most of 
the time, the upper-scale methods benefit from the results of the lower scales 
providing physical quantities and/or information on the fundamental physical 
mechanisms. 
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