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Emmanuel Clouet a,b, Sébastien Garruchet c, Hoang Nguyen b,
Michel Perez c, Charlotte S. Becquart b,*

a Service de Recherches de Métallurgie Physique, CEA/Saclay, 91191 Gif-sur-Yvette, France
b Laboratoire de Métallurgie Physique et Génie des Matériaux, UMR CNRS 8517, École Nationale Supérieure de Chimie de Lille,
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Abstract

The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe–C interatomic
potential based on the embedded atom method and molecular statics simulations. Results of atomic simulations are compared with pre-
dictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as
anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are con-
sidered. Using isotropic elasticity allows the prediction of the main trends of the interaction, whereas considering only the interstitial
dilatation will lead to a wrong interaction.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Interactions between interstitial solute atoms and dislo-
cations drive many mechanical properties of steels. Indeed,
carbon or nitrogen atoms in body-centred cubic (bcc) iron
tend to segregate on dislocations and form Cottrell atmo-
spheres [1]. Once these atmospheres have appeared, an
extra force is needed to unpin the dislocations. These pin-
ning/unpinning processes lead to a subsequent higher yield
stress and mechanical instabilities (Lüders’ bands) [2] that
are a serious hindrance to manufacture. Moreover, interac-
tion between interstitial atoms and dislocations also limits
the life span of many metallic components (strain ageing
effects). Static strain ageing implies the formation of Cott-
rell atmospheres whereas dynamic strain ageing occurs at
high temperature and involves a competitive motion of dis-
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locations and interstitial atoms [1]. To prevent any pinning
of dislocations by interstitial atoms, ultra-low carbon or
interstitial free steels were designed by removing interstitial
atoms out of the solid solution, either by involving them
within precipitates (TiN, TiC, etc.) or by making them
interact with other substitutional atoms (Mn, Cr). In some
cases, interaction between dislocations and solute atoms is
also responsible of heterogeneous precipitation (e.g. NbC
in iron [3,4]). This interaction may cause a segregation of
solute atoms on the dislocation and, locally, the supersatu-
ration could become high enough for precipitates to nucle-
ate. The estimation of the dislocations–interstitial atoms
interaction is thus important to understand and model
both the flow behaviour of steels and the first stages of het-
erogeneous precipitation.

Various experimental techniques give an insight into this
interaction. Using thermoelectric power, resistivity mea-
surements or mechanical spectroscopy [5–7], it is possible
to obtain a value for the segregation energy. One can also
rights reserved.
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use three-dimensional atom probe tomography to directly
image the Cottrell atmospheres decorating the dislocations
[8–10].

Atomic simulations are also a good tool to study this
interaction. For instance, using different interatomic poten-
tials, several authors [11–15] obtained a segregation energy
for C atoms on dislocations in reasonable agreement with
the ones deduced from experiments. It is also possible to
directly simulate the effect of interstitial impurity on the dis-
location glide properties via molecular dynamics [14]. How-
ever, despite their capacity, atomic simulations have severe
drawbacks as they do not allow the modelling of more than
a few dislocations (usually one or two), whereas the flow
behaviour of a metal is mainly controlled by the collective
evolution of the whole dislocation population. Moreover,
the timescale that can be simulated with molecular dynam-
ics is not compatible with the one corresponding to solute
diffusion, preventing any direct simulation at the atomic
scale of the Cottrell atmosphere formation. Therefore,
whether one is interested in the increase of the yield stress
associated with the pinning/unpinning process of the dislo-
cations from their Cottrell atmospheres or in the segrega-
tion kinetics of solute interstitials on dislocations, atomic
simulations are not sufficient and a modelling at a higher
scale is also needed. It is thus necessary to describe the inter-
action between interstitials and dislocations not only at the
atomic scale, as can be done with ab initio or empirical
potentials, but also at a mesoscopic scale compatible with
other simulation and modelling tools.

For that purpose, elasticity theory has been widely
used; from the calculation of the elastic field around a dis-
location [16] and the elastic distortion of the host lattice
due to an interstitial atom [17], this theory can estimate
the interaction energy between both defects. Cottrell and
Bilby [1] first estimated this energy by considering the
elastic interaction between the pressure created by a dislo-
cation and the relaxation volume of C interstitials in iron
(the size interaction). This calculation was then improved
by Cochardt et al. [18] so as to consider not only the dila-
tation but also the shear strain associated with interstitials
(the shape interaction). All these calculations were per-
formed using isotropic elasticity to get the dislocation
stress field, although iron is anisotropic due to the cubic
symmetry of its lattice. Douthwaite and Evans [19] thus
repeated the calculations of Cochardt et al. using aniso-
tropic elasticity to obtain the dislocation elastic field.
With their work, the modelling within linear elasticity the-
ory of the interaction between dislocations and C intersti-
tials in iron was then complete.

The simplicity and versatility of elasticity theory is at the
origin of its wide success. However, this theory cannot
quantify the interaction when the interstitial atoms lie in
the dislocation core. The question of the validity of elastic-
ity theory remains open: what is the minimal separation
distance between both defects so as to trust linear elasticity
theory? Moreover, most elastic calculations assume isot-
ropy and consider only the interstitial dilatation, as in the
original work of Cottrell and Bilby [1]. These simplifying
assumptions need to be checked, as they may be wrong.
In particular, the work of Cochardt et al. [18] showed that
the shape interaction has to be considered when accounting
for the existence of Cottrell atmospheres around screw
dislocations.

One way to assess the validity of elasticity theory is by
means of atomic simulations, by which the interaction
energies between interstitial atoms and dislocations given
by both methods can be compared. Such an approach
has already been used to study the interaction between
vacancies and dislocations in face-centred cubic (fcc) met-
als [20]. In that case, isotropic linear elasticity led to quan-
titative predictions of the interaction energy as soon as the
vacancy was further than a few atomic distances (�10 Å)
from the dislocations. Studying the dislocation interaction
with an interstitial atom will extend this conclusion to the
case where the point defect not only acts as a dilatation
centre but also causes a shear. Moreover, choosing a bcc
host lattice circumvents the complexity of dislocations in
the fcc lattice related to the stacking fault, which cannot
be easily modelled within elasticity theory.

In the work described in the present article, we use
molecular statics (MS) to investigate the interaction
between a carbon atom and screw or edge dislocations in
bcc iron at the atomic scale. These simulations rely on
the recently developed empirical interatomic potential for
Fe–C [13,21]. Interaction energies computed with MS are
then compared with elasticity theory for a wide number
of C atom positions around the dislocation. This allows
us to examine the validity of the different approximations
that can be made in the elastic calculation.

2. Atomic simulations

2.1. Interatomic potential

The FeC interatomic potential used in this work was
built according to the embedded atom method [22,23].
The pure Fe part was developed by Mendelev and co-work-
ers [24,25] and the Fe–C interaction by Raulot [13]. This
potential was fitted to experimental and ab initio data. It
should be stressed that care was taken in the fitting proce-
dure of the Fe part so as to ensure a reasonable description
of atomic interactions at small separation distances (see
Ref. [24] for a detailed description). As a consequence, it
leads to a core structure for the screw dislocation in pure
a-Fe that is in agreement with ab initio calculations [26–
28]: the core is compact rather than exhibiting a degener-
ated core, i.e. it is asymmetrically spread in the three
{110} of the [111] zone, as is often predicted by empirical
potentials for bcc Fe. With this potential, the most stable
configuration for C in interstitial configuration is the octa-
hedral site, in agreement with experimental observations
[29]. C diffusion in a-Fe and the evolution of the lattice
parameter vs. C content are also in good agreement with
the experimental data [13].
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2.2. Introduction of the dislocation in the simulation cell

The Burgers vector of both the edge and screw disloca-
tions considered is b = a0/2 [111], where a0 = 2.8553 Å is
the Fe lattice parameter as given by the atomic potential,
and their glide plane is a {110} plane. These dislocations
are the most commonly observed in iron. For the edge dis-
location, the dislocation line is in the ½1�21� direction,
whereas for the screw dislocation, the dislocation line is
in the [111] direction.

The dislocations were created at the centre of the simu-
lation box by displacing atoms according to anisotropic
elasticity theory of straight line defects [30–32], i.e. by
applying to each atom the displacement corresponding to
the dislocation Volterra elastic field. In the case of the
screw dislocation, some analytical expressions of this elas-
tic field have been developed [33,34] and can be used
instead of the general sextic formalism [30–32]. All the
atoms of the lattice except for those situated in an outside
layer 8 Å thick (twice the potential cut-off) were then
allowed to relax so as to minimize the simulation box
energy as given by the atomic potential. The atoms in the
outside layer were fixed in the position given by anisotropic
elasticity.

Depending on the sign of the Burgers vector, two possi-
ble configurations of the screw dislocation can be obtained
and are referred to as ‘‘hard” and ‘‘soft” [35]. In this work,
the most stable configuration (i.e. ‘‘soft”) was investigated.

2.3. Detection of the dislocation location

Due to its high Peierls stress, the screw dislocation stays
in its initial location. However, this is not the case for the
edge dislocation. When a carbon atom lies close to the edge
dislocation core, the interaction between the two defects
becomes so strong that the dislocation moves along its
glide plane. In this case, it is important to locate precisely
the final position of the dislocation core. A convenient
way to do this is to compare the atomic simulations with
the predictions of a Peirls–Nabarro model [36]. The dislo-
cation line is detected by calculating the disregistry func-
tion of the atoms, that is the displacement difference
a
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Fig. 1. Detection of the edge dislocation: (a) the disregistry function as predicte
and (b) the corresponding Burgers vector density distribution.
D(x) = uabove(x) � ubelow(x) between the atoms in the two
adjacent planes [111] above and below the slip plane.
The derivative of this function is then computed, thus giv-
ing the Burgers vector density distribution:

qðxÞ ¼ dDðxÞ
dx

where x is the coordinate along the gliding direction.
Using the Peierls–Nabarro model, these two functions

produce the following simple expressions [16]:

DðxÞ ¼ b
p

tan�1 x
n

� �
þ b

2

and

qðxÞ ¼ dDðxÞ
dx

¼ bn

pðn2 þ x2Þ
where n = d/[2(1 � m)] can be considered as the dislocation
half width, d ¼

ffiffiffi
2
p

a0 is the interplanar spacing in the direc-
tion perpendicular to the (�101) glide plane and m is the
Poisson ratio.

Fig. 1a and b represents the disregistry function and
the Burgers vector density distribution for the edge dislo-
cation in a-Fe observed in our atomic simulations after
the dislocation was created using anisotropic elasticity
and the atomic positions were relaxed according to the
interatomic potential. The disregistry function and the
corresponding distribution predicted by the Peierls–Nab-
arro model are also presented for comparison. Despite
some discrepancies, both density distributions are maxi-
mum for the same position. This position corresponds
to the dislocation core in the Peierls–Nabarro model.
Therefore, the location of the edge dislocation will be
associated with the maximum of this density distribution
in our simulations.

2.4. C interstitials in interaction with the dislocation

In a-Fe, interstitial solute carbon atoms are found in
octahedral sites. This kind of site has two first neighbours
oriented along a h100i type direction and four second
nearest neighbours lying along h110i directions in the
b
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plane perpendicular to the direction containing the two
first neighbours. The site has full tetragonal symmetry
[(4/m)(2/m)(2/m)]. The two first neighbours h1 00i direction
corresponding to the tetragonal axis can be referred to as
‘‘the site orientation”. There are thus three variants of these
octahedral sites – the [100], [010] and [001] sites – which
are energetically equivalent in a stress free state.

The binding energy between the C atom and the disloca-
tion was determined employing molecular statics. The fol-
lowing definition was used:

Ebindðdisloc; octaÞ ¼ ½EðdislocÞ þ EðoctaÞ�
� ½Eðdisloc þ octaÞ þ EðrefÞ� ð1Þ

where E(disloc) is the total energy of the system containing
one dislocation, E(octa) is the total energy of the system
containing one carbon atom in an octahedral site, E(ref)
is the total energy of the perfect lattice and E(disloc + octa)
is the total energy of the system containing both one dislo-
cation and one carbon atom. With such a definition, a po-
sitive binding energy indicates attraction between the
interstitial and the dislocation.
Fig. 2. (a) Projection on (111) plane of Fe atomic positions and C octahedral s
The octahedral sites are coloured following a scheme depending on their bindin
of the coloured triangle. Binding energies for other C variants can be simply
The C atom was introduced in the neighbourhood of
the dislocation line, in octahedral sites, after the initial
relaxation of the dislocation. The simulation box contain-
ing the carbon atom and the dislocation was then relaxed
again.

2.5. Results of the atomic simulations

The results for the screw dislocation are presented in
Fig. 2, in which the C binding energy was represented for
one variant. Due to the threefold symmetry obeyed both
by the bcc lattice (Fig. 2a) and the dislocation, the binding
energy for other variants of C atoms can be simply
obtained by a ±2p/3 rotation of Fig. 2b. We checked in
our atomic simulations that this threefold symmetry holds
for the C–screw dislocation binding energy. The most sta-
ble configuration for the C atom does not correspond to
the closest one to the dislocation core, as this position is
highly unstable, but is situated in the next neighbour shell.

For the edge dislocation, as expected, the binding energy
is largely positive on the tension side near the core, corre-
sponding to a strong attraction, and slightly negative on
ites. (b) C–screw dislocation binding energies for different C [010] variants.
g energy. The position of the dislocation corresponds to the gravity centre

obtained by a rotation of ±2p/3.
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the compression side, corresponding to a slight repulsion.
The maximum C–edge dislocation interaction energy arises
for carbon atoms located in octahedral sites with tetrago-
nal distortion axis in the direction [100] or [00 1], in the
glide plane, very close to the dislocation core (±0.3 Å
according to the site type). This value, Eb = 0.66 eV, is very
close to that of 0.68 eV found recently by Tapasa et al. [14]
or the value of 0.7 eV obtained by De Hosson [12]. The sec-
ond highest energy value, Eb = 0.47 eV, is again for octahe-
dral sites with a tetragonal distortion axis in the direction
[100] or [001], but is very close to the maximum value
for the [010] site, Eb = 0.42 eV, for a carbon in the site just
below the glide plane.

Table 1 summarizes the maximum binding values
obtained in this work and compares them with experimen-
tal data, as well as with the results of other atomic simula-
tions [11,12,14,15]. An interesting point is that the
maximum binding energy for the edge dislocation
(0.66 eV) is approximately 60% higher than the one for
the screw dislocation (0.41 eV). It is worth noting that
the different atomic simulations (cf. Table 1) agree on this
stronger binding. Therefore, one can expect that C will pin
edge dislocations more efficiently than screw dislocations.
Nevertheless, the pinning of screw dislocations by C atoms
remains effective. The values obtained in the present work
are compatible with the ones deduced from experiments.
We could not extend the comparison as experiments do
not allow any differentiation between edge and screw dislo-
cations. Moreover, the different experimental data are quite
scattered even when they are obtained with the same tech-
niques. The values obtained from atomic simulations by
different authors also show some variation. This illustrates
the sensitivity of the C–dislocation binding energy to the
empirical potential that was used. Even the most recent
studies [14,15], including this work, lead to different values,
although the potentials used give the same elastic constants
for Fe. This clearly shows that the maximal C–dislocation
binding energy cannot be deduced directly from elasticity.
For the sake of completeness, we nevertheless include in
Table 1 binding energies given by elastic calculations
Table 1
Maximum C–dislocation binding energy (eV) (Eq. (1))

Dislocation type Authors

Screw Present work
Screw Chang [11]
Screw Cochardt et al. [18]
Screw Douthwaite and Evans [19]
Edge Present work
Edge De Hosson [12]
Edge Tapasa et al. [14]
Edge Shu and Wang [15]
Edge Cochardt et al. [18]
Unknown Kamber et al. [5]
Unknown Gavril’yuk et al. [43]
Unknown Henderson [44]

Experimental data were obtained by anelastic measurements (Snoek damping
Theoretical values based on elasticity theory used r = b as the cut-off distance
[18,19]. As we shall see in the next section, the cut-off dis-
tance used in these calculations may be too small for elas-
ticity to apply. However, it is clear that the values predicted
by elasticity are surprisingly similar to the experimental
ones and to the ones deduced from our atomic simulations.
3. Elasticity theory

3.1. Point defect description

Elasticity theory assumes a continuum description,
within which a point defect can be modelled by a tensor
Pij corresponding to the first moments of an equilibrated
point force distribution [37]. The tensor Pij, usually called
the ‘‘elastic dipole”, can be directly deduced from simple
atomic simulations. To do so, one can consider a periodic
simulation box having a volume V and containing only one
point defect. Such a simulation box can minimize its energy
by taking a homogeneous strain eij. The contribution Ee of
such a strain to the elastic energy will be composed of its
self-energy and its interaction with the force moment ten-
sors [37],

Ee ¼
1

2
VCijkleijekl � P ijeij ð2Þ

where Cijkl are the elastic constants of the host crystal. If
the system is free to relax, it will adopt the strain that min-
imizes its energy. The elastic energy given by Eq. (2) is min-
imal when the following relation between the homogeneous
strain and the elastic dipoles is verified:

P ij ¼ VCijklekl ð3Þ
Doing atomic simulations where the system is allowed to
relax the atomic coordinates as well as the coordinates of
the periodicity vectors, i.e. relaxation under no external
stress, one gets direct access to the homogeneous strain eij

induced by the point defect on the simulation box and
therefore on the tensor Pij used to model this point defect.

Usually, it is more convenient to perform atomic simu-
lations where only the atomic coordinates are relaxed
Method Ebind (eV)

MS 0.41
MS 0.59
Isotropic elasticity 0.75
Anisotropic elasticity 0.621
MS 0.66
MS 0.7
MS 0.68
MS 0.78
Isotropic elasticity 0.75
Exp. 0.5
Exp. 0.75
Exp. 0.45

peak and cold-work damping peak).
.
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whereas the periodicity vectors are kept fixed. A simulation
box containing a point defect will, therefore, develop a
stress given by

rij ¼ �
1

V
P ij

The measure of the stress in such simulations gives thus a
direct access to the value of the force moments.

Before applying the above method to our potential,
one can notice that, due to the symmetry of the octahe-
dral interstitial site in the bcc lattice, the force moment
tensor corresponding to a C atom takes the following
expression in the reference frame corresponding to the
cubic unit cell:

ðP ijÞ ¼
P x 0 0

0 P x 0

0 0 P z

0
B@

1
CA

for the [001] variant of the octahedral site. Other variants
correspond to a permutation of the components Px and Pz.
The stress tensor of a simulation box containing one C
atom should therefore be diagonal with rxx = ryy.

The stress tensor measured in our simulations has the
shape predicted by theory and its nonzero components
vary linearly with the inverse of the simulation box volume
(Fig. 3). The values deduced for the force moments from
these simulations are Px = 3.40 and Pz = 8.03 eV.

One can compare these values with experimental data.
Indeed, the tensor describing the strain induced by a C
atom (Eq. (3)) is also diagonal. This strain tensor there-
fore corresponds to a dilatation or contraction along the
axes of the cubic unit cell. The fact that this strain varies
linearly with the size of the simulation box for one carbon
atom corresponds to Vegard law. This leads to the follow-
ing linear relation between the variation of the lattice
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Fig. 3. Variation of the stress with the inverse of the simulation box
volume for a simulation box containing one C atom in a [001] octahedral
site. The stress is expressed in the reference frame corresponding to the
cubic unit cell. Symbols correspond to atomic simulations and lines to
their linear regression.
parameter and the atomic fraction xC of carbon atoms,
all assumed to be in the [001] variant of the octahedral
sites:

aðxCÞ ¼ a0ð1þ dxxCÞ; along the ½100� or ½010� axes

cðxCÞ ¼ a0ð1þ dzxCÞ; along the ½001� axis

where a0 = 2.8553 Å is the pure Fe lattice parameter as gi-
ven by the atomic potential. The constants dx and dz, cor-
responding to the previously deduced moments Px and Pz,
are given by

dx ¼
2

a3
0

C11P x � C12P z

ðC11 � C12ÞðC11 þ 2C12Þ
¼ �0:088

dz ¼
2

a3
0

�2C12P x þ ðC11 þ C12ÞP z

ðC11 � C12ÞðC11 þ 2C12Þ
¼ 0:56

where we used the Fe experimental elastic constants C11 =
243, C12 = 145 and C44 = 116 GPa, the atomic potential
used in this study being fitted on these constants [24,25].

Using the same potential, Becquart et al. [13] determined
with molecular dynamics simulations the variation of Fe
lattice parameter with C content at 300 K. They obtained
dx = �0.1 and dz = 0.6. This gives us confidence in our
method to determine the variations dx and dz of the lattice
parameter and thus the force moments Pij from the stress.
The difference between both results should arise from the
temperature dependence of the coefficients dx and dz.

All the authors that modelled the binding energy
between C atoms and dislocation in iron within elasticity
theory used different values for the coefficients dx and dz.
Douthwaite and Evans [19] used dx = �0.07 and
dz = 0.83, these values being deduced from experimental
measurements (dilatometry and anelasticity) in ferrite. On
the other hand, Cochardt et al. [18] and Bacon [38] used
values deduced from experimental measurements per-
formed on martensite: dx = �0.052 and dz = 0.76 for Ref.
[18], dx = �0.0977 and dz = 0.862 for Ref. [38]. Finally,
Cheng et al. [39] obtained from a fit to different experimen-
tal data dx = �0.09 and dz = 0.85. Therefore, we see that
the potential used in this study leads to a volume of forma-
tion ð2dx þ dzÞa3

0=2 and a tetragonal distortion (dz � dx)
smaller than the values used by all other studies based on
elasticity theory. As the purpose of this article is mainly
to compare atomic simulations with elasticity theory, we
use the values dx = �0.088 and dz = 0.56, corresponding
to the atomic potential.

3.2. Point defect interaction with dislocation

A point defect modelled by the force moment tensor Pij

interacts with the strain field ed
ij of the dislocation. The

binding energy, as defined at the atomic scale by Eq. (1),
is given by

Ebind ¼ P ije
d
ij ð4Þ

Using Eq. (3), this interaction energy can also be written

Ebind ¼ V eijr
d
ij ð5Þ
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Fig. 4. Binding energy between a 1=2½111�ð1�10Þ screw dislocation and a
carbon atom for different positions x of the dislocation in its glide plane.
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where rd
ij ¼ Cijkled

kl is the stress created by the dislocation
and eij is the homogeneous strain induced by the point de-
fect on the volume V, as described in the previous subsec-
tion. This equation corresponds to the model first
developed by Cochardt et al. [18] and used in all the other
studies based on elasticity theory [19,38]. Bacon [38]
pointed that Cochardt’s model could be rationalized in
term of force dipoles, leading to the equivalence between
Eqs. (4) and (5) for the binding energy.

It is sometimes considered that the point defect is only a
dilatation centre. This means that the tensors Pij or eij are
diagonal, with all diagonal components being equal. One
thus obtains the elastic model first proposed by Cottrell
and Bilby [1] and the binding energy reduces to the size
interaction,

Ebind ¼ �P ddX ð6Þ
where P d ¼ �

P
ir

d
ii=3 is the pressure created by the disloca-

tion and dX ¼ V
P

ieii is the point defect relaxation volume.
For a point defect like a vacancy which can truly be as-
sumed to act as a dilatation centre (at least in crystals hav-
ing the cubic symmetry), this approximation is correct, as
was shown in fcc metals [20]. This should also be true for
substitutional impurities, but for interstitial impurities like
C atoms in iron this approximation is wrong, as we show
below.

Studies of point defect interaction with dislocations
based on elasticity theory also differ in the way they con-
sider anisotropy: one can use either isotropic elasticity, like
Cochardt et al. [18] and Bacon [38], or anisotropic elastic-
ity, like Douthwaite and Evans [19], to calculate the strain
and stress created by the dislocation. It should be pointed
out that, when taking into account anisotropy in elasticity
theory, the stress and strain created by the dislocation is
still decaying as the inverse of the distance to the disloca-
tion line. The point defect interaction energy with the dis-
location will therefore show the same dependence on the
separation distance, whether considering anisotropy or
not. Only the angular dependence and the amplitude will
differ.

For the anisotropic elastic calculations presented in this
work, the elastic constants corresponding to the Fe poten-
tial [24,25] are used: C11 = 243, C12 = 145 and
C44 = 116 GPa. For isotropic elastic calculations, we need
to define equivalent isotropic elastic constants. To do so,
we used the shear modulus l, the bulk modulus K and
the Poisson coefficient m, obtained by Voigt average [16]
of the real anisotropic elastic constants:

l ¼ 1

5
ðC11 � C12 þ 3C44Þ ¼ 89:2 GPa

K ¼ 1

3
ðC11 þ 2C12Þ ¼ 178 GPa

m ¼ C11 þ 4C12 � 2C44

2ð2C11 þ 3C12 þ C44Þ
¼ 0:285

The use of this definition for the isotropic elastic constants
has already been shown to lead to correct results when
computing the vacancy–dislocation interaction energy in
fcc metals [20].

3.3. Comparison with atomic simulations

In Figs. 4–7, we plot the variation of the binding energy
between a carbon atom and a dislocation, either screw or
edge. Each figure part corresponds to a different variant
of the C interstitial. When representing the binding energy
on these figures, the distance h between the C atom and the
dislocation glide plane is kept fixed while the projection x

on the glide plane of the separation distance between both
defects is varied. These figures thus illustrate the variation
of the binding energy when the dislocation is gliding and
the first derivative of the plotted function will give the force
exerted by the C atom on the gliding dislocation.
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In Fig. 4, we compare the results of the atomic simula-
tions with elasticity theory for the screw dislocation. This
figure allows us to determine the validity of the different
approximations that can be made within elasticity to calcu-
late this interaction. If anisotropic elasticity is used to get
the dislocation stress field and if all the components of
the elastic dipole representing the C atom are considered
(size and shape interactions, as given by Eqs. (4) and (5)),
a perfect quantitative agreement is obtained with the
atomic simulations. If one uses isotropic elasticity instead,
no such agreement is obtained, although the variation in
the binding energy remains qualitatively correct. Assuming
now that the C atom only acts as a dilatation centre and
thus considering only the size interaction (Eq. (6)), the
binding energy obtained from anisotropic elasticity com-
pletely disagrees with the ones deduced from our atomic
simulations. In particular, it is clear that most of the inter-
action between the C atom and the screw dislocation arises
from the tetragonal distortion induced by the interstitial
and only a small part can be attributed to its dilatation.

Very similar conclusions can be drawn for the edge dis-
location (Fig. 5). Anisotropic elasticity perfectly repro-
duces the variation of the binding energy, whereas
isotropic elasticity reproduces the global trends but does
not lead to the same quantitative agreement. In both cases,
one has to consider both the dilatation and the tetragonal
distortion due to the interstitial. Because of the higher pres-
sure created by the edge dislocation than by the screw, the
part of the binding energy associated with the dilatation is
more important. Nevertheless, if one considers only this
contribution and neglects the interstitial interaction with
the shear created by the dislocation, no good description
of the binding energy can be obtained.

This comparison (Figs. 4 and 5) between atomic simula-
tions and elasticity theory was made for a C atom lying far
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Fig. 7. Binding energy between a 1=2½111�ð�1 0 1Þ edge dislocation and a
carbon atom for different positions x of the dislocation in its glide plane.
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elasticity theory, considering all components of the stress created by the
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enough from the dislocation glide plane to be sure that
elasticity could be applied. It showed that no approxima-
tion in the elastic calculations could be made to obtain
quantitative predictions. We can now compare our atomic
simulation results with the elastic calculations when the C
atom gets closer to the dislocation glide plane (Figs. 6
and 7), so as to see what is the minimal separation distance
for elasticity to apply. For a screw dislocation (Fig. 6), elas-
ticity theory is still able to predict quantitatively the bind-
ing energy even when the C atom is really close to the
dislocation centre. A discrepancy is observed only for posi-
tions which are at a distance less than 2 Å from the centre
and which can be considered as belonging to the disloca-
tion core. For all other positions, calculations based on
elasticity theory will lead to the same binding energy as
the atomic simulations.

The conclusions are quite different for a C atom inter-
acting with an edge dislocation (Fig. 7). When the C atom
gets closer to the dislocation glide plane the agreement
between elasticity theory and atomic calculation breaks
up more rapidly than with the screw dislocation. It appears
that elasticity theory perfectly reproduces the atomic simu-
lations only when the C atom is further than �20 Å, a
region which cannot be reasonably assumed to correspond
to the dislocation core.

4. Discussion

Two different hypotheses can be made to explain why
the C atom has to be further from the edge dislocation core
than from the screw dislocation core for elasticity to quan-
titatively predict the interaction energy.

Screw and edge dislocations create different stress fields.
The screw stress field is mainly of shear type, whereas the
edge stress field has strong hydrostatic and shear compo-
nents. Indeed, elasticity theory predicts that both the pres-
sure and the Von Misès equivalent shear stress created by a
Volterra edge dislocation reach a maximum of 40 GPa in
the (110) plane which is the closest to the glide plane
(h = d110/2 � 1Å). For a Volterra screw dislocation, the
Von Misès stress reaches the same value for the same sep-
aration distance but the maximum of the pressure is only
7 GPa. Therefore, the pressure component of the stress
field is higher for the edge dislocation than for the screw
dislocation. One thus expects the Eq. (4), which assumes
linearity between the carbon interaction energy and the
stress where it is embedded, to be less precise for the edge
dislocation. Indeed, it was shown in a recent study using
the same potential [21] that the behaviour of the carbon
diffusion barrier under a uniaxial stress is nonlinear. This
nonlinearity is negligible for small stresses but has a strong
influence when the stress increases like close to the disloca-
tion core. One could consider this nonlinearity to model
within elasticity theory the carbon–dislocation interaction
energy and obtain a better agreement with the atomic sim-
ulations. Actually, Eshelby theory for the elastic inclusion
and inhomogeneity [40,41] allows the prediction of such a
nonlinearity leading to a correction which varies quadrati-
cally with the stress. Equivalently, one could consider that
the amplitude of the elastic dipole used to model the point
defect depends linearly on the local stress, thus introducing
polarizability. In the case of a dilatation centre like a
vacancy, one can obtain easy-to-use analytical expressions
within isotropic elasticity. It has been shown that taking
into account this second-order correction slightly improves
the agreement with atomic simulations for the vacancy
binding energy to a dislocation [20]. For a point defect with
a tetragonal distortion, like C interstitial, an analytical
expression of this second-order correction is still tractable
within isotropic elasticity [41]. Nevertheless, we have
shown above that one needs to take full account of anisot-
ropy in the elastic calculations to obtain a quantitative
agreement with the atomic simulations, at least for long
separation distances. Such a second-order correction would
therefore have to be considered within anisotropic elasticity
and would require the determination of the full 4th rank
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polarizability tensor of the point defect, which is far
beyond the scope of this article.

Another possible explanation of the discrepancy at short
distances between the elastic and atomic calculations of the
binding energy for the edge dislocation is the displacement
field created by the dislocation. If one compares the dislo-
cation displacement field given by the atomic calculations
using the Mendelev potential with the Volterra displace-
ment field predicted by anisotropic elasticity (Fig. 8), one
sees that they disagree at short distances below �20 Å. This
is particularly true for the longitudinal component, i.e. the
component parallel to the dislocation direction. At long
distances, the atomic simulations lead to a displacement
field corresponding to the Volterra one, but at short dis-
tances there is a supplementary displacement. It has been
shown that a dilatation of the dislocation core can create
such a supplementary displacement field that will superim-
pose the Volterra one [42]. This elastic field has a much
shorter range than the Volterra one, as the corresponding
displacement decays as the inverse of the distance to the
dislocation. This could explain why the elastic calculations
lead to a value slightly different from the atomic calcula-
tions close to the dislocations. Indeed, our elasticity model
assumes that a dislocation only creates a Volterra elastic
field and does not take into account any other possible
elastic field. For the screw dislocation, our atomic calcula-
tions lead to a displacement field that agrees perfectly with
the Volterra elastic field and no such supplementary field is
present with the Mendelev potential. Therefore, it is not
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Fig. 8. Longitudinal component of the displacement field for an edge
dislocation in Fe: (a) the Volterra displacement field given by anisotropic
elasticity; (b) the difference between the displacement field observed in
atomic simulations with the Mendelev potential [24,25] and the Volterra
displacement field given by anisotropic elasticity.
surprising that a better agreement between the atomic cal-
culations and elasticity theory is observed for the screw
than for the edge dislocation.
5. Conclusions

The binding energy in iron between a carbon atom and a
dislocation was studied at the atomic scale with an empir-
ical interatomic potential and molecular statics simula-
tions. The binding energy was found to be Ebind =
0.66 eV for an edge dislocation and Ebind = 0.41 eV for a
screw dislocation, in reasonable agreement with available
experimental data and results from other atomic
simulations.

The atomic simulations were then used to check the abil-
ity of elasticity theory to predict this binding energy. It was
shown that, to be quantitative, elasticity theory does not
suffer any approximation. A perfect agreement with the
atomic simulations is obtained when both the dilatation
and the tetragonal distortion due to the C atom are consid-
ered and when anisotropy is included in the elastic calcula-
tions. Using isotropic elasticity theory instead, one can
reproduce only qualitatively the interaction of the disloca-
tion with the C atom.

For the screw dislocation, the binding energy predicted
by elasticity theory is in very good agreement with the
atomic simulations even when the carbon atom is close to
the dislocation core. Some discrepancies exist, as could be
expected in the dislocation core. However, one can con-
sider that the agreement is almost perfect for all the octahe-
dral sites situated at a distance greater than 2 Å. For the
edge dislocation, the picture is quite different. Far from
the dislocation, the same quantitative agreement between
elasticity and the atomic simulations is observed. However,
the elastic predictions differ from the atomic results when
the distance between the C atom and the dislocation centre
is less than 20 Å; both methods lead to the same trends for
the variation of the binding energy, but it was not possible
to obtain an agreement as good as for the screw disloca-
tion. Two different possibilities to explain this difference
between screw and edge dislocations have been proposed.
The polarizability of C atoms may have to be considered
in the case of the edge dislocation because of the stresses
which get higher than for the screw dislocation. A short
range elastic field has also been evidenced close to the edge
dislocation core, and it may have to be considered in addi-
tion to the Volterra elastic field when computing the C
atom interaction with the edge dislocation.
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