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Classical Nucleation and Growth Theories provide a compelling framework predicting the
nucleation and growth of precipitates. When implemented in a class model, such an
approach provides the time evolution of the Particle Size Distribution. It is shown in
this article that a reversion treatment (instantaneous heating of the microstructure to a
temperature high enough to induce some dissolution of the precipitates) can be used to
calibrate all physical parameters of the model independently: (i) the solubility limit of
alloying element is related to the equilibrium volume fraction; (ii) the interfacial energy
is related to the minimum of volume fraction evolution; and (iii) the diffusion constant is
related to the kinetics of the precipitate radii evolution.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

La Théorie Classique de la Germination/Croissance est un puissant outil pour prédire
des cinétiques de précipitation. Implémentée dans un modèle par classes de taille, cette
approche permet de prédire l’évolution de la distribution de taille des précipités. Dans
cet article, il est montré qu’un traitement de réversion (chauffage à une température qui
entraine une dissolution partielle des précipités) peut être utilisé pour déterminer de façon
indépendante tous les paramètres physiques du modèle: (i) la limite de solubilité est liée
à la fraction volumique précipitée d’équilibre, (ii) l’énergie d’interface est liée au minimum
de la fraction volumique précipitée, et (iii) le coefficient de diffusion est lié à la cinétique
d’évolution du rayon moyen des précipités.

© 2010 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Fine scale precipitation is one of the most important features of the microstructure of metallic alloys for the control
of many of their properties [1]. Nanoscale precipitates have a direct impact on the mechanical properties, particularly on
strength [2], and many indirect impacts such as their influence on recrystallization [3] and/or grain growth [4,5]. The op-
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timization of the end properties requires controlling the formation of the precipitates, particularly in terms of size and
dispersion (volume fraction and number density). A given microstructure is obtained by following a sequence of heat treat-
ments, going through different stages that are generally artificially separated into nucleation (appearance) of new particles,
growth (increase of particle size at constant number per unit volume), and coarsening (diminution of the number of particles
at constant volume fraction). Practically, these stages are, of course, inter-related, and a complete description of precipitation
requires also considering other processes such as shrinkage (reverse of growth), heterogeneous nucleation and competition
between different forming phases that can be stable or metastable.

The scientific field of precipitation modelling has been extremely active in the last decade. Modelling the processes
of precipitation can be achieved at different scales, with corresponding tools, with each having its own advantages and
disadvantages:

(i) At the atomic scale, Atomic Kinetic Monte Carlo methods are widely used [6]. With the currently available computer
resources, these methods make it possible to simulate both the initial and relatively late stages of the precipitation
process, including coarsening. Based on proper ab initio modelling, they provide a very sound description of the kinetic
path, and are well adapted to tackle difficult problems such as precipitation in concentrated materials. However they
are strongly restricted in terms of modelling of real systems, namely in their capacity to describe multi-component
systems (more than ternary becomes difficult), phases of complicated crystallography, heterogeneous precipitation and
elastic effects.

(ii) At the mesoscopic level, several modelling approaches exist, based on a continuous or semi-continuous description of
matter. The two most common techniques are the cluster dynamics method, based on the thermodynamics of conden-
sation/evaporation kinetics of atoms on precipitates [7], and the class modelling method, based on the application of
the classical nucleation and growth equations to a discrete precipitate size distribution [8–14]. Although these methods
offer a less precise description of the precipitation processes, they are well adapted to tackle complicated problems
such as multi-component, multi-phase precipitation or non-isothermal precipitation.

(iii) At the macroscopic scale, one finds semi-phenomenological approaches such as the Johnson–Mehl–Avrami–Kolmogorov
(JMAK) models [15,16]. These models generally describe only the fraction transformed and not the scale of the mi-
crostructures.

One common difficulty in applying models to describe a precipitation process is to obtain reliable data for the physical
parameters of the phase transformation. One can list the main parameters in a simple binary alloy, for which the solid so-
lution obeys a simple thermodynamics (e.g. diluted regular solution) as: (i) the equilibrium solubility of the solute; (ii) the
diffusion constant of the solute in the matrix; and (iii) the interfacial energy between precipitate and matrix. Moreover, if
nucleation of the precipitates is not perfectly homogeneous (which is a common complication), one additional parameter ap-
pears, related to the heterogeneous character of nucleation. Since these parameters are not generally known with sufficient
precision in the literature, they must be obtained by adjusting the models to experimental data. This is a slightly hazardous
task, because obtaining large sets of quantitative data is not an easy task, and the effects of the different parameters on a
given feature of the microstructure are generally inter-related. One example is the precipitate coarsening rate predicted by
the LSW law, which depends on three parameters (solute solubility, diffusion coefficient, and interfacial energy) [8].

The present article will present a type of precipitation model that has seen a strong development in the last years, which
is the class model, based on Classical Nucleation and Growth Theories (CNGTs) [8–14]. In this model, the precipitates are
distributed in classes of size. The evolution of precipitates in each class is computed using classical equations for growth and
dissolution, and assuming simple equilibrium conditions at the interfaces (local thermodynamic equilibrium). The explicit
consideration of the precipitate size distributions has proven to be very powerful to describe complicated effects arising
from non-isothermal precipitation kinetics, and therefore these models have been shown to be applicable to wide ranges of
complicated situations. We will show in the present article that these models can be used with a methodology by which
all parameters of a precipitation model can be obtained independently from a comparison with experimental data along
non-isothermal heat treatments. In Section 2 the class model will be presented; in Section 3 the methodology for obtaining
the different parameters will be detailed, and the influence of a number of parameters will be investigated.

2. Class model for precipitation

The class model for precipitation aims at describing the quantitative time evolution of the precipitation state, namely
the particle size distribution, the volume fraction and the number density of precipitates. The precipitate size distribution is
discretized into several size classes. The time evolution of the radius of each class is calculated as a function of temperature,
solute content, solubility limit and diffusivity. Nucleation can eventually take place, thus adding new classes of precipitates.

For the sake of simplicity, in this article, we will restrict the use of the class model to cases where: (i) no nucleation
occur; (ii) precipitates are spherical; (iii) the alloy is binary; and (iv) all precipitate classes are composed of the matrix
element and the alloying element (fraction X p). For more complex cases see Ref. [13].
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2.1. Description of the Particle Size Distribution (PSD)

The continuous size distribution is discretized into a large number of size classes. A size class is defined by: (i) its
radius Ri ; (ii) its number of precipitates Ni per unit volume; and (iii) its chemistry X p (fraction of alloying element within
precipitate). The total number of precipitates N per unit volume is then given by

N =
∑

i

Ni (1)

and the mean radius R̄ of the distribution is

R̄ = 1

N

∑
i

Ri Ni (2)

The precipitate volume fraction f T is then given by

f T = 4

3
π

∑
i

Ni R3
i (3)

Finally, the mass balance sets the amount of solute atoms X remaining in solid solution from the knowledge of the particle
size distribution and the total amount of alloying element X0:

X = X0 − α f T X p

1 − α f T
(4)

where α = v M
at /v p

at is the ratio of matrix to precipitates atomic volumes (mean volume per atom).

2.2. Evolution equations

In binary alloys, the diffusion controlled growth rate of spherical precipitates (molar composition X p , radius Ri ) em-
bedded in a supersaturated solid solution (mean solute mole fraction in the matrix X , equilibrium solute mole fraction
Xe at the precipitate/matrix interface) has been provided by Zener [17] under the assumption of small supersaturation
(X0 − Xe � αX p − Xe):

dRi

dt
= D

Ri

X − Xe

αX p − Xe
(5)

Interface curvature plays an important role on equilibrium mole fraction Xe; this is the so-called Gibbs–Thomson ef-
fect [18–21]. Hence, in a stoichiometric binary precipitate of composition X p , radius Ri and matrix/precipitate surface
energy γ , the precipitate/matrix interface equilibrium mole fractions are modified [22]:

Xe(Ri) = Xe exp

(
2γ v p

at

X p
i RikB T

)
(6)

where kB is Boltzman’s constant and T is the absolute temperature. This leads to the following set of growth equations for
each class i:

dRi

dt
= D

Ri

X − Xe(Ri)

αX p − Xe(Ri)
(7)

Note that Eq. (7) combined with Eq. (6) is perfectly adapted to describe the coarsening regime, where shrinking of
small precipitates occurs to the benefit of large ones due to Gibbs–Thomson effects. The critical radius R∗ is the radius
which separates the growing precipitates (R > R∗ meaning Xe < X ) and the ones that shrink (R < R∗ meaning Xi > X ), i.e.
dR/dt(R∗) = 0. Using Eq. (6) leads to:

R∗ = R0

ln(X/Xe)
with R0 = 2γ v p

at

X pkB T
(8)

2.3. Implementation

The time evolution of each size class radius is calculated, the size class population remaining constant. At each time step,
the new radius of all existing classes is calculated according to:

Ri(t + �t) = Ri(t) + dRi × �t (9)

dt
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Fig. 1. Nucleation-growth sequence with a class model. At each time step, a new class is created and all existing classes grow according to classical
nucleation and growth theories.

Fig. 1. Séquence de germination-croissance avec un modèle par classes. A chaque pas de temps, une nouvelle classe est créée et toutes les classes existantes
croissent.

where the growth rate is given by Eq. (7). Fig. 1 details how growth and, if necessary, nucleation are managed within this
approach.

An adaptive time step is also implemented in order to accelerate the simulation within reasonable accuracy: a too
large time step may lead to numerical instabilities (oscillations) and/or aberrations (negative concentrations). A logarithmic
increment of the time step is first performed (�t → 1.1�t). The new time step �t is accepted if: (i) the solute concentration
ranges between 0 and 1; and (ii) the critical radius R∗ (which is the most sensitive variable of the model) does not vary
more than 1% between each time step. If either of these conditions is not fulfilled, the program returns to the previous time
step and makes a new attempt with a smaller time step (typically �t → �t/2). This last step can be repeated as many
times as necessary.

In this approach, note that the number of classes decreases during the coarsening stage: classes smaller than the critical
size (Ri < R∗) shrink, until they completely disappear.1 To keep an accurate description of the PSD, a minimum number of
classes should exist (typically 500). Therefore, if the distance (in terms of radius) between two adjacent classes is too large,
a new class is artificially created between these two classes, its precipitate number density being adjusted to keep constant
both the distribution density and the total precipitate volume fraction (more detail on class management can be found in
Ref. [13]).

3. Methodology for an independent measurement of precipitate parameters

The idea behind this methodology is to separate the kinetic aspects from the thermodynamic aspects of precipitation. The
thermodynamic properties determine the precipitate stability. This encompasses both the equilibrium stability (represented
by the dependence of solute solubility on temperature) and the stability of precipitates of finite size (Gibbs–Thomson effect,
whose magnitude depends on the interfacial energy). A convenient way to estimate experimentally the precipitate stability
is to rapidly heat up a sample containing small scale precipitates. At a given temperature, the precipitates become unstable,
and start to dissolve. The magnitude of this dissolution depends critically on the Gibbs–Thomson effect, and therefore both
on the equilibrium solubility and on the interfacial energy. Let us study in some detail the sequence of events which happen
during a so-called reversion experiment, which brings a sample containing precipitates rapidly to a higher temperature.

In the framework of mesoscopic precipitation modelling, an important parameter is the solute fraction at the precipi-
tate/matrix interface. If this concentration is lower than the average matrix fraction, the precipitate grows, and if it is larger,
the precipitates shrinks. This can be translated in the definition of a critical radius R∗ (see Eq. (8)).

For a given solute concentration, R∗ increases with temperature, meaning that precipitates of a given size R will be-
come unstable when the temperature becomes sufficient high that R∗ > R . On the other hand, for a given temperature, if
the solute concentration increases (which happens when some precipitates dissolve), R∗ is observed to decrease, so that
precipitates that were unstable at a given time can regain stability once the solute content has reached a value, which is
sufficiently high. Thus, the evolution of a precipitate of a given size during a non-isothermal heat treatment is a complicated
interplay between the evolution of the precipitate radius (resulting from growth or dissolution) and of the critical radius
(resulting from changes in temperature or solute content).

As a model system we will consider the Fe–Cu system, with precipitation of pure Cu in Fe (X p = 1). Precipitates in this
system are spherical, the atomic volume inside the precipitates is similar to that in the matrix and the difference can be
neglected in first approximation (α = 1). For the thermodynamics of the system we will use the same equation for solubility
as determined in [23]:

1 A class is deleted from the distribution if its radius is lower than 0.1 nm.
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Fig. 2. A reversion treatment: after a first treatment resulting in a radius of 1.5 nm and a volume fraction of 1%, an isothermal treatment (reversion) at
700 ◦C is performed. The mean radius suddenly drops (shrinkage) and then starts to increase (coarsening). Interfacial energy is γ = 0.25 J/m2.

Fig. 2. Traitement de réversion : un premier traitement de précipitation donne lieu à un rayon moyen de 1.5 nm et une fraction volumique précipitée
de 1 %. Ensuite, un traitement isotherme (réversion) à 700 ◦C est effectué. Le rayon moyen diminue alors fortement (dissolution), puis croit de nouveau
(mûrissement). L’énergie d’interface est γ = 0,25 J/m2.

log10 Ce [wt%] = 5 771 323

T 2
− 15 763.84

T
+ 9.944961 (10)

and

Xe = MFe

MCu

Ce [wt%]
100

(11)

We will consider a total solute concentration of 1.4 wt%, which corresponds to 1.23 at% (X0 = 0.0123). We will assume
an interfacial energy for the precipitates γ = 0.25 J/m2, and the diffusion constant as:

D = D0 exp

(
Q

RT

)
(12)

with D0 = 6 × 10−8 m2/s and Q = 166 400 J/mol.
In order to describe a reversion experiment, it is not necessary to take into account any parameters for nucleation, since

we will consider precipitates that are already present in the initial microstructure, the only thing that can happen to these
particles is that they dissolve or they grow. Thus, the behavior of precipitates along such thermal paths will be influenced
by all parameters except those for nucleation. Fig. 2 shows the reversion behavior on an initial precipitation state with
an initial average radius of 1.5 nm and a phase fraction of 1%. The initial precipitate size distribution is taken as a log-
normal distribution with a relative standard deviation of 0.2, which corresponds approximately to what is found in many
experimental situations.

When such a microstructure is instantaneously heated to a temperature high enough to induce some dissolution of the
precipitates, a three stage behaviour is observed:

(1) In a first stage, the volume fraction decreases rapidly, meaning that the destabilized precipitates start to dissolve. The
average precipitate size actually does not change much at this stage, which could appear surprising at first thought.
Actually the evaluation of the precipitate size distribution at different times during this stage provides an interpretation
of this relatively constant average radius: whereas almost all precipitates shrink (decease of the mean radius), the
smallest precipitates dissolve/disappear (increase of the mean radius). The net result is that the average value of the
particle size stays rather constant.

(2) In a second stage, the volume fraction reaches a minimum. It is observed that this minimum coincides with the equality
of the critical and average radii. In fact, at the constant temperature of the reversion experiment, when the unstable
precipitates dissolve, the solute content of the matrix increases, resulting in a decrease of the critical radius, which
gives additional stability to the precipitates that remain. At the point where the average and critical radii are equal,
dissolution stops.

(3) In a third stage, the precipitate size increases rapidly, and the volume fraction increases more slowly towards an equi-
librium value at the heat treatment temperature. During this stage, the critical radius remains at a size comparable to
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Fig. 3. Evolution of volume fraction and precipitate size for different values of (a) the equilibrium solubility at the reversion temperature (here 700 ◦C), and
(b) the interfacial energy.

Fig. 3. Evolution de la fraction volumique précipitée pour différentes valeurs de (a) la limite de solubilité à 700 ◦C, et (b) l’énergie d’interface.

the average precipitate size. This stage is a coarsening stage. The fact that the precipitate volume fraction evolves is a
result of the growing precipitate size: at each time step the volume fraction is at a value that ensures equilibrium with
the average precipitate size R . The mass balance (Eq. (4)) leads to:

f T = X0 − Xe exp

(
R0

R

)
(13)

Now it is possible to evaluate the effects of the three main parameters of precipitation (excluding nucleation, which does
not intervene in reversion treatments) on the reversion process.

Fig. 3(a) shows the evolution of the volume fraction and precipitate size for different values of the equilibrium solubility
at the reversion temperature (here 700 ◦C). Obviously, the value of solubility at the reversion temperature acts on the
equilibrium volume fraction at the end of the heat treatment. This parameter also has a strong influence on the minimum
volume fraction, through its influence on precipitate stability. Interestingly, the effect of the solubility on the evolution of
the precipitate radius is however very small.

Fig. 3(b) shows the same evolution, when changing the interfacial energy. In this case, the equilibrium volume fraction
is not changed, however, the minimum volume fraction is strongly affected. This behaviour is related to the influence of
interfacial energy on the stability of precipitates of finite size (Gibbs–Thomson effect). The effect of interfacial energy on
the evolution of precipitate size is now larger. Notably, the simulations confirm that the coarsening rate (albeit still with a
time exponent of 1/3) is lower when the interfacial energy is lower. However, it appears very clearly that the sensitivity to
the interfacial energy of the coarsening rate is much lower than that of the minimum volume fraction during the reversion
experiment.

Fig. 4 shows the same evolution, when changing the diffusion constant. Clearly, the only influence of this parameter is
to change the kinetics of the reversion process: changing the diffusion constant simply shifts the curves by a time constant.

From these results a methodology for the calibration of the physical parameters of a precipitating system can thus be
devised:

(i) Calibrate the solubility on equilibrium volume fraction;
(ii) Calibrate the interfacial energy on the minimum of volume fraction;

(iii) Calibrate the diffusion constant on the kinetics of the precipitate evolution.

This methodology enables an independent calibration of these parameters, without any interference with nucleation,
which can be studied separately during heat treatments performed from the solid solution. Existing data in the literature
have already made use of this methodology to calibrate precipitate models both in aluminium alloys and in the Fe–Cu
system.
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Fig. 4. Evolution of volume fraction and precipitate size for different values of the diffusion constant (from left to right: 102, 101, 100, 10−1 and 10−2)
relative to the initial value defined in the text.

Fig. 4. Évolution de la fraction volumique précipitée et du rayon moyen pour différentes valeurs du coefficient de diffusion (de gauche à droite : 102, 101,
100, 10−1 et 10−2) en relatif par rapport à la valeur donnée dans le texte.

Fig. 5. Evolution of volume fraction and precipitate size for different values of (a) the reversion temperature, and (b) the initial average radius.

Fig. 5. Evolution de la fraction volumique précipitée pour différentes valeurs de (a) la température de réversion, et (b) la valeur initiale du rayon moyen de
la distribution de taille des précipités.

Next, the effect of temperature on these physical parameters can be studied by performing reversion experiments with
the same initial microstructure but at different temperatures. Fig. 5(a) shows the reversion behaviour as a function of the
temperature of the experiment. The influence of temperature on precipitate volume fraction is similar to a solubility change,
acting simultaneously on the minimum volume fraction and the equilibrium one. However, in this case the radius evolution
is affected as well, especially in the coarsening regime.

Now it is interesting to evaluate how the reversion behaviour depends on the parameters of the initial precipitate mi-
crostructure, before the reversion experiment is performed. We will keep constant the type of precipitate size distribution
(PSD) (namely a log normal distribution), and change independently its three parameters, namely the average radius, the
width of the precipitate size distribution and the volume fraction.
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Fig. 6. Evolution of volume fraction and precipitate size for different values of (a) the precipitate size distribution width, and (b) the initial volume fraction.

Fig. 6. Evolution de la fraction volumique précipitée pour différentes valeurs de (a) la largeur de la distribution de taille des précipités, et (b) la valeur
initiale de la fraction volumique précipitée.

Fig. 5(b) shows the effect of changing the value of the average radius. When precipitates are initially larger, they are
more stable through the Gibbs–Thomson effect, and thus dissolve more slowly and to a smaller extent. After this initial
stage, however, all microstructures converge to the same coarsening stage.

Fig. 6(a) shows the effect of changing the PSD width. This effect is observed to be very small as compared to the effect
of the other parameters of the microstructure. When the PSD is wide, the extent of dissolution is smaller. This can be
understood by the fact that the PSD in this case contains more large particles that will experience a smaller amount of
dissolution, whereas the smaller precipitates, whatever the width of the distributions, experience dissolution in any case.

Finally, Fig. 6(b) shows the effect of changing the volume fraction. Changing the initial volume fraction (at constant
precipitate radius) has very little influence on the precipitate size evolution. The volume fraction evolution also follows a
common behaviour as soon as the minimum volume fraction is reached. This behaviour, which could appear surprising
at first, comes from a compensation between the dissolution rate of precipitates and the solute content: when the initial
volume fraction is larger, the solute content is smaller, thus the critical radius is larger and the precipitates are more
unstable. As a consequence they dissolve faster and join the other particles that have dissolved less or not at all for the
lowest initial volume fraction.

In conclusion, it should be mentioned that it is very difficult to design initial microstructures where one parameter is
changed without changing the other ones.

4. Conclusion

Class models for precipitation have proven in the literature to be powerful tools capable of describing complex precip-
itation processes, whether isothermal or non-isothermal, including several types of precipitates, non-stoichiometric phases,
etc.

We have shown in this article that modelling of the so-called reversion experiments allows us to obtain independently
information on three parameters of the precipitating system: the diffusion constant, solubility at the reversion temperature,
and interfacial energy. Most importantly, these parameters are obtained without any interference with precipitate nucleation,
which generally requires a separate, independent modelling effort.

Of course, this model-based calibration of physical parameters requires high quality data so as to obtain the evolution of
average size and volume fraction, preferably in situ. To our knowledge such measurements are relatively straightforward in
systems where the precipitate composition is well known, using Small-Angle Scattering (SAS) [24].
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