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A B S T R A C T

Modeling precipitation in metallic alloys is a topic of great importance in physical metallurgy as the resulting
strengthening strongly depends on the precipitate microstructure. We propose here a numerical full-field model
for precipitation that describes precipitates with shape functions, thereby allowing to bridge scales between
phase-field approaches - that accurately describe the precipitate evolution but require a fine discretization
grid - and mean-field approaches - that are computationally very efficient but rely on strong assumptions.
Our results demonstrate the capability of the full-field approach to model the different stages of precipitation
during isothermal treatments. The comparison with mean-field results allow to discuss the influence of solutal
impingement and precipitate coagulations on the evolution of the precipitate microstructure.
1. Introduction

In precipitate-hardened alloys (e.g. aluminum alloys of the 6000
and 7000 series, and Ni-based super-alloys), thermal treatments allow
for the control of the precipitation of secondary phases in order to
achieve optimal mechanical properties [1,2]. First, annealing above the
solubility limit allows for the homogeneous dispersion of solute atoms
in the alloys. Second, a precipitation treatment at a lower temperature
triggers the nucleation and growth of second phase precipitates.

In these alloys, the precipitates form obstacles to dislocation motion
and the resulting hardening strongly depends on the size, volume
fraction and microstructure of the precipitates [3,4]. The technolog-
ical relevance of these alloys as structural materials promoted the
development of quantitative modeling tools predicting the evolution of
the microstructure. In particular, the precipitate evolution is usually
described through three distinct stages: the first stage consists in the
nucleation of precipitates from the solid solution; then, the precip-
itates growth is enabled by the solute diffusion in the surrounding
supersaturated medium. Finally, when the solute concentration in the
matrix becomes comparable to the equilibrium composition, the system
enters a coarsening stage where the Gibbs–Thomson effect promotes the
growth of large precipitates and the shrinkage of small ones.

The first major theoretical step on the study of precipitate evolution
was performed by Lifshitz, Slyozov and Wagner (LSW) [5,6] who
derived an analytical solution describing the steady-state behavior of
interacting precipitates during the coarsening stage. They assume each
precipitate to be isolated in an infinite medium. Solving the steady-state
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diffusion field around a precipitate yields its growth rate as function of
its radius. Combining the growth rates for all precipitate sizes allows
deriving the size distribution in the steady-state coarsening regime and
the coarsening law for the average precipitate radius.

The main limitations of this analytical treatment are (i) the mean-
field nature of the theory and the assumption of isolated precipitates,
which make the treatment valid only in the limit of vanishing precipi-
tate volume fractions; (ii) the fact that the LSW solution describes the
steady-state coarsening stage and does not provide information about
the nucleation and growth stages.

Several strategies have been employed to generalize the LSW so-
lution beyond the assumption of vanishing precipitate volume frac-
tion [7]. An elegant solution was proposed by Wang et al. [8] and
consists in accounting for solutal impingement between precipitates by
incorporating a screening length into the diffusion of solutes around
isolated precipitates. In the steady-state coarsening regime, the re-
sults of this screening diffusion theory were successfully compared to
numerical models [8] and experimental results in the case of Al-Li
alloys [8,9].

Modeling the precipitation process in the nucleation and growth
stages also seems desirable to simulate microstructure evolution at
the beginning of the precipitation treatment. Kampmann and Wag-
ner introduced a numerical model (also known as KWN model) com-
bining the classical nucleation theory with a mean-field treatment
of precipitate growth and coarsening [10]. As in the LSW theory,
each precipitate is assumed to interact with an average medium. Easy
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to implement and relatively fast in execution, KWN-type models are
now widespread: they are implemented either in ‘‘Euler-like’’ approach
(solving fluxes between neighboring size classes), or in ‘‘Lagrange-
like’’ approach (solving time evolution of precipitate size classes) [11].
They can be found in the form of open software (e.g. PreciSo [11],
Kawin [12]) or more accomplished commercial packages (e.g. Math-
calc [13–15], TC-Prisma [16]). Beyond homogeneous isothermal ther-
mal treatments, processing techniques such as additive manufacturing
and welding lead to rapid, heterogeneous thermal history that greatly
affect the precipitation microstructure. Adapting these modeling tools
to this type of heat treatment is a challenging ongoing task [17–19].

In recent formulations of the KWN models, the growth rate of
precipitates is modified to account for precipitate interactions through
solutal impingement [20–22]. This type of technique will be referred
to as mean-field approaches in the following and will be used as a
benchmark to compare results obtained from our full-field model. More
details about these approaches and their numerical integration are
given in Appendix A.

These numerical approaches, despite their versatility, rely on a
mean-field description and can only account for solutal impingement in
an approximated manner [8,20–22]. In addition, they do not provide
information on the positions of precipitates in space nor on their
spatial correlations. Full-field approaches overcome such limitations by
modeling the microstructure as a set of precipitates located at different
positions in the simulated volume. Voorhees and Glicksman proposed
a multi-particle diffusion model [23] to investigate the coarsening of
an ensemble of particles described with a spherical shape function and
interacting through stationary diffusion field. This numerical model
remains however limited to describing the coarsening stage and does
not include nucleation nor coagulation of precipitates.

Phase-field modeling can be seen as a more comprehensive full-
field approach [24,25]. The precipitate/matrix interfaces are described
through the variations of an auxiliary phase field, which facilitate the
description of arbitrary precipitate shapes and topological changes due
to the coagulation of neighboring precipitates. These approaches are
highly versatile and allow to incorporate the role of anisotropic surface
energy [26,27] and elastic interactions [28–30]. Phase-field models
have been used to investigate the evolution of interacting precipi-
tates [30–34] and to discuss the validity of the mean-field descriptions
presented above. However, phase-field methods requires descriptions of
interface with a finite width that have to be significantly smaller than
the capillary length and the precipitate radius to capture accurately the
Gibbs–Thomson effect. Such description requires a discretization on a
fine numerical grid, which comes at a numerical cost. Despite a recent
formulation mitigating this issue [35], accessible length-scale and time
scales remains limited and investigating the evolution of a large number
of precipitates is computationally expensive.

In this article, we present a full-field method enabling to describe
the nucleation, growth and coarsening of precipitates in a binary
alloy, at a mesoscopic scale. To go beyond the length and time-scale
limitations of phase-field models, we do not aim at describing the de-
tails of the precipitate-matrix interface. Instead, the precipitate/matrix
interfaces are considered to be sharp and are described with a shape-
function. The diffusion equation is solved numerically between precip-
itates and their growth rate is obtained by integrating the solutal flux
on the precipitate surface.

Such mesoscale approach relying on shape functions was used
to model dendritic solidification [36,37]. This formalism allows to
simulate large dendritic microstructures out of reach of phase field
models while accounting for diverse mechanisms such as the nucleation
of new grains [38,39] or the influence of fluid flow [40,41]. This meso-
scale approach therefore emerged as a scale-bridging tool between
physically-based phase-field models and coarse-grained approaches
that rely on simplifying assumptions and to discuss the domain of

validity of these simplifications [38,39,41]. t

2 
Fig. 1. Schematic representation of the ingredients used in the model to describe the
evolution of a precipitate population.

Similarly, the aim of the sharp interface full-field model developed
here is to model precipitation within a representative volume and
to compare the results to a mean-field approach for precipitation in
order to discuss the assumptions it relies on. We employ material
parameters pertaining to Al-Sc alloys. It is considered as a model system
to study precipitation kinetics because of the formation of spherical
nano-precipitates and the fact that the thermodynamics and kinetics
coefficients have been well assessed [42–44]. The article is organized
as follows: the full-field model and its numerical implementation are
presented in Section 2. Next, the model is validated in Section 3 by com-
paring its results with known analytical solutions and by monitoring
solute conservation alongside different mechanisms. Section 4 discusses
the model’s results and the comparison with mean-field models.

2. Sharp interface full-field model: ShIFuMo

2.1. Physical ingredients

The full-field model named ShIFuMo (Sharp Interface Full-field
Model) is based on several ingredients to describe the precipitation
state during a heat treatment. The model aims at describing nucleation,
growth and coarsening of precipitates denoted 𝑝 in a matrix denoted
𝑚. The system studied here is a binary AB system (A being the solvent
and B the solutes) where we assume the formation of stoichiometric
precipitates AxBy. In this work, precipitates are considered spherical
even though other shape functions (e.g. cuboidal, ellipsoidal) can be
considered.

We denote 𝑋 (respectively 𝐶) the molar (volume) concentration of
olutes B that are related by 𝑋 = 𝐶𝑣𝑎𝑡𝑚 , 𝑣𝑎𝑡𝑚 being the atomic volume
f the matrix. We denote 𝑋𝑒𝑞 the equilibrium concentration given by
he phase diagram and 𝑋𝑝 the molar composition of solutes in the
recipitate: 𝑋𝑝 = 𝑦∕(𝑥 + 𝑦).

Fig. 1 summarizes the ingredients of the model which are described
n the following.

.1.1. Classical nucleation theory
The nucleation of new precipitates is described by the classical

ucleation theory [5,6,11,19], that is briefly recalled in the following.
et us consider a spherical precipitate germ of radius 𝑅. The differ-
nce of Gibbs energy of the system brought by this germ is linked
o the competition between a positive interfacial energy contribution
proportional to the precipitate/matrix interface) and a negative energy
ontribution (proportional to the volume of the precipitate):

𝐺 = 𝑆𝑝𝛾 + 𝑉𝑝𝛥𝑔 = 4𝜋𝑅2𝛾 + 4
3
𝜋𝑅3𝛥𝑔, (1)

where 𝛾 is the precipitate/matrix interface energy and 𝛥𝑔 is the differ-
nce of free energy per unit volume between the precipitate and the
atrix phases. This quantity depends on the composition: it is nil if

he concentration of the matrix matches the equilibrium concentration
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𝑋𝑒𝑞 given by the phase-diagram, and becomes negative for higher
concentrations. It is common to express this quantity as follows [19]:

𝛥𝑔 = −
𝑘𝐵𝑇 𝑦

(𝑥 + 𝑦)𝑣𝑎𝑡𝑝
ln

[

𝑋𝑥(1 −𝑋)𝑦

𝑋𝑥
𝑒𝑞(1 −𝑋𝑒𝑞)𝑦

]

, (2)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature, 𝑣𝑎𝑡𝑝 the atomic
olume of the precipitate, 𝑥 and 𝑦 are the stoichiometric coefficients of
he precipitate. This expression is commonly written as a function of
he solubility product 𝐾 = 𝑋𝑒𝑞(𝑇 )𝑥(1 − 𝑋𝑒𝑞(𝑇 ))𝑦, where 𝑋𝑒𝑞(𝑇 ) is the
quilibrium composition given by the phase diagram at temperature 𝑇 .
urthermore, the dependence of 𝐾 with temperature can be captured
y considering:

(𝑇 ) = 10−
𝐴
𝑇 +𝐵+ 𝐶

𝑇 2 , (3)

here 𝐴, 𝐵, and 𝐶 are constants. Such expression is chosen because in
he dilute limit 𝑋𝑒𝑞 ≪ 𝑋𝑝, where the solid solution can be described by
n ideal solution model, 𝐴 = −𝛥𝐻∕𝑘𝐵 , 𝐵 = −𝛥𝑆∕𝑘𝐵 and 𝐶 = 0. The
erm 𝐶 enables to account for higher-order terms emerging away from
he limit 𝑋𝑒𝑞 ≪ 𝑋𝑝.

In order to become a stable precipitate, a nucleus has to overcome
he Gibbs energy barrier described as the maximum of Eq. (1):

𝐺∗ = 16
3
𝜋

𝛾3

𝛥𝑔2
(4)

This maximum is reached for a critical radius

𝑅∗ = −
2𝛾
𝛥𝑔

. (5)

Based on these considerations, the classical nucleation theory de-
cribes the nucleation rate as an Arrhenius function of this energy bar-
ier [45]. More precisely, following previous works [46], the nucleation
ate per unit time and unit volume is expressed as:

𝑑𝑁
𝑑𝑡

(𝑋) = 𝑁0𝛽
∗𝑍 exp

[

−𝛥𝐺∗(𝑋)
𝑘𝐵𝑇

]

(

1 − 𝑒−𝑡∕𝜏
)

(6)

here 𝑁0 = 1∕𝑣𝑎𝑡𝑚 is the density of nucleation sites, 𝛽∗ = 4𝜋𝑅∗2

𝑋∕(𝑎4𝑋𝑝) is the condensation rate of monomers on a precipitate of
ritical radius, 𝑎 is the lattice parameter, 𝑍 = 𝑣𝑎𝑡𝑝

𝑥+𝑦
𝑦

√

𝛾∕(𝑘𝐵𝑇 )∕(2𝜋𝑅∗2)
s the Zeldovich’s factor and 𝜏 = 2∕(𝜋𝑍2𝛽∗) is the incubation time.

In our full-field approach, the concentration 𝑋 varies spatially and
𝑁∕𝑑𝑡 is then also a function of space, such that nucleation events are
ore probable in regions containing higher concentrations of solutes.

The nuclei of size 𝑅∗ are as likely to grow as to shrink, both
volutions leading to reduce the system energy. In practice, we consider
hat nucleating precipitates have a radius [11]:

∗
𝑘𝑇 = 𝑅∗ + 1

2

√

𝑘𝐵𝑇
𝜋𝛾

. (7)

2.1.2. Diffusion and precipitate evolution
Another consequence of the competition between surface and vol-

ume energy contributions is the change of equilibrium concentration
emerging from the curvature of the precipitate/matrix interface, also
referred to as the Gibbs–Thomson effect. For a spherical stoichiometric
precipitate of radius 𝑅, the equilibrium composition at its curved
interface is given by [47]:

𝑋𝑅 = 𝑋𝑒𝑞 exp
[

(𝑥 + 𝑦)
𝑦

𝑙0
𝑅

]

, (8)

here 𝑙0 is the capillary length expressed as

0 =
2𝛾𝑣𝑎𝑡𝑝
𝑘𝐵𝑇

. (9)

In a system containing multiple precipitates, Eq. (8) gives the equi-
librium concentration on precipitate interfaces and serves as boundary
conditions for the diffusion of solutes between them (i.e. in the matrix
 f

3 
phase). We assume that the solute field in the matrix follows the
time-dependent diffusion equation
𝜕𝑋(𝑟, 𝑡)

𝜕𝑡
= 𝐷∇2𝑋(𝑟, 𝑡), (10)

here 𝐷 is the diffusion coefficient of solutes in the matrix assumed
onstant in space.

Integrating Eq. (10) with boundary conditions given by Eq. (8)
n the precipitates interfaces leads to solute fluxes from high to low
oncentration regions, resulting in the growth or shrinkage of existing
recipitates. The growth rate of precipitates is obtained by integrating
he flux of solutes at the precipitate/matrix interface 𝑆 and applying
ass conservation:

𝑑𝑅
𝑑𝑡

= 𝐷
4𝜋𝑅2(𝐶𝑝 − 𝐶𝑅) ∫𝑆

𝛁𝑪 ⋅ 𝒅𝑺

= 𝐷

4𝜋𝑅2
(

𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝 −𝑋𝑅

) ∫𝑆
𝛁𝑿 ⋅ 𝒅𝑺. (11)

here the vector 𝒅𝑺 denotes the infinitesimal interface element with
normal pointing outwards the precipitate. In particular, after their

ucleation, the equilibrium concentration at precipitates interfaces is
ower than the composition of the surrounding matrix, promoting fluxes
f solutes towards the precipitates and triggering their growth through
q. (11). During this growth stage, the matrix composition decreases
ntil it becomes comparable to the interfacial concentrations given by
q. (8). In this situation, solutes flow from small precipitates (with
igher interfacial concentration) to large ones, which promotes the
hrinkage of the former and the growth of the latter, thereby triggering
he coarsening of the precipitates population.

.2. Numerical implementation

We consider a simulated volume 𝑉𝑡𝑜𝑡 that we discretize regularly
n cubic voxels of volume 𝛥𝑥3. The precipitates are described by a
hape function (considered spherical in this work), an evolving radius

and a fixed position in the simulated volume.1 Thanks to this shape-
unction description of the precipitates, the grid spacing 𝛥𝑥 can be
hosen independently from the capillary length 𝑙0.

The system evolves through the time evolution of two fields : the
oncentration field 𝑋 and a precipitate field denoted 𝛷. Each voxel 𝑖
f the simulated volume has a concentration 𝑋𝑖 and is either in matrix
tate (𝛷𝑖 = 0) or in precipitate state (𝛷𝑖 = 1) if the center of the voxel is
nside the shape function of a precipitate (see Fig. 2). This consideration
esults in a dual description of a precipitate: it is represented in a
iscrete fashion by an ensemble of voxels on the grid (i.e. orange voxels
n Fig. 2) and also by a radius 𝑅 evolving continuously in time (red
ircle on Fig. 2). In particular, the volume of the orange voxels is in
eneral different than the volume enclosed in the sphere of radius 𝑅,
hich has an influence on the way mass conservation is enforced, as it
ill be discussed later.

Nucleation of new precipitates is performed by considering the rate
iven by Eq. (6) that is composition-dependent and computed on each
oxel. The quantity 𝑑𝑁

𝑑𝑡 (𝑋𝑖)𝛥𝑡𝛥𝑥3 gives the probability of nucleating a
ew precipitate on a voxel of volume 𝛥𝑥3 and composition 𝑋𝑖 during

the time step 𝛥𝑡. The stochastic character of the nucleation process
is reproduced by drawing a random number between 0 and 1 and
comparing it to this probability. If the test is passed, a new precipitate
of radius 𝑅 = 𝑅∗

𝑘𝑇 (see Eq. (7)) can be created on the voxel. If it
does not overlap with other existing ones, the new precipitate is added.
For simplicity, the solute quantity used for this nucleation event is
homogeneously subtracted from the matrix of the entire system. This

1 We note that the drift of precipitates center of mass induced by
symmetrical composition fluxes is not taken into account in the current
ormulation.
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Fig. 2. Schematic representation of a precipitate on the discrete numerical lattice.
The red circle represents the continuous representation of the precipitate, and the
orange voxels depict its discrete representation used to integrate the diffusion equation.
The shaded voxels are at the surface of the precipitate where the fluxes (represented
with black arrows) are computed to obtain the growth rate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

procedure is comparable to what is done in mean-field approaches as
the quantity of solute used for nucleation is removed from the matrix
composition [10,11]. Other strategies can be employed, such as the use
of a depletion layer that consists in removing solutes locally around the
precipitate [48].

The equilibrium concentrations 𝑋𝑅 at the precipitates interfaces are
computed with Eq. (8) and evolve with the precipitates radius. These
concentrations serve as boundary conditions for the diffusion equation
and are applied on all the voxels inside the precipitate (orange voxels
on Fig. 2).

The diffusion equation (10) is then integrated throughout the matrix
by the mean of a simple Euler explicit method of time step 𝛥𝑡. The
concentration on each matrix voxel is computed at 𝑡 + 𝛥𝑡 from the
concentrations on neighboring voxels at time 𝑡:

𝑋𝑡+𝛥𝑡
𝑖 = 𝑋𝑡

𝑖 +
𝐷𝛥𝑡
𝛥𝑥2

(1 −𝛷𝑡
𝑖)

[neighbors
∑

𝑛
(𝑋𝑡

𝑛 −𝑋𝑡
𝑖 )

]

, (12)

where the sum runs over the 6 neighbors of the voxel 𝑖. The prefactor
(1 − 𝛷𝑡

𝑖) is incorporated to make sure the diffusion occurs only in the
matrix and does not affect the concentration in the precipitates.

The growth of a precipitate is obtained from the flux  of solutes
at the precipitate/matrix interface, that is computed as:

 = 𝐷
surface
∑

𝑛
(𝑋𝑛 −𝑋𝑅)𝛥𝑥 (13)

where the index 𝑛 runs on the voxels of the matrix surrounding the pre-
cipitates shown in hatched in Fig. 2. The new radius of the precipitate
is then computed from the mass balance at the interface:

𝑅𝑡+𝛥𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅3
𝑡 +

3
4𝜋

 𝛥𝑡
(

𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝 −𝑋𝑅

)

⎤

⎥

⎥

⎥

⎥

⎦

1
3

. (14)

A Taylor expansion in the limit  𝛥𝑡 ≪ 𝑅3
𝑡 can be used to recover a

orm equivalent to Eq. (11). But for a finite 𝛥𝑡, the integration of this
pproximated equation leads to the accumulation of small numerical
rrors that break mass conservation. Therefore, the precipitate radius
volution is computed using Eq. (14).

The evolution of the precipitate radius with time leads to its growth
r shrinkage, such that the imprint of the precipitate on the discrete
rid (Fig. 2) has to be updated. If a voxel 𝑖 is initially in the matrix

nd is captured by a growing precipitate, the solutes it contained is t

4 
istributed on the neighboring matrix voxels, its concentration is set
y the Gibbs–Thomson relation and its state changes to 𝛷𝑖 = 1. If a
oxel belonging to a precipitate is lost because the precipitate shrinks,
ts concentration does not change and its state shifts to matrix with
𝑖 = 0.

When a precipitate becomes very small, the Gibbs–Thomson equa-
ion diverges, which leads to non-physical behaviors and numerical
nstabilities. To avoid this divergence, we introduce a threshold radius
𝑡ℎ. This radius is chosen so that the equilibrium concentration at the

nterface does not exceed the concentration 𝑋𝑝, with a security factor
:

𝑡ℎ = 𝛼
𝑥 + 𝑦
𝑦

𝑙0∕ ln
( 𝑋𝑝

𝑋𝑒𝑞

)

. (15)

In practice, we choose a security factor 𝛼 = 1.25 to remain far from
potential numerical instabilities. This choice leads to 𝑅𝑡ℎ ≃ 0.3 nm at
the temperature of interest. If 𝑅 < 𝑅𝑡ℎ, the precipitate is removed from
the system, and the solute it contains is homogeneously distributed on
the voxels it occupied.

When growing precipitates are close to one another, their interfaces
can collide such that their evolution cannot be tracked by the inte-
gration of Eq. (14). The coagulation of these precipitates is occurring
through a transient regime, eventually leading to the formation of a
larger spherical precipitate [32]. One of the considerations underlying
this meso-scale model is to neglect the complex evolution of the precip-
itate/matrix interface in this transient regime, such that coagulations
are treated as follows. The condition for coagulation is written as:

𝑅𝑖 + 𝑅𝑗 > 𝑑𝑖𝑗 + 𝜖, (16)

where 𝑅𝑖 and 𝑅𝑗 are the precipitates radius, 𝑑𝑖𝑗 is the distance between
their centers of mass, and 𝜖 is a small distance taken as 𝜖 = 𝛥𝑥. If two
recipitates meet this condition, they coagulate and they are replaced
y a new precipitate. Its position is chosen at the center of mass of both
oagulating precipitates and its radius is chosen to conserve mass.

Throughout each step, a special attention is paid to mass conserva-
ion in order to avoid any drift of the total solute composition, which
ill drastically affect the resulting microstructure.

They are multiple ways to compute the total solute content in the
ystem by summing differently the solute content of the matrix and the
recipitates. We choose to define the total solute content as:

𝑡𝑜𝑡
𝑎𝑡 =

𝑁𝑣𝑜𝑥
∑

𝑖=1
𝑋𝑖

𝛥𝑥3

𝑣𝑎𝑡𝑚
+

𝑁𝑝𝑝𝑡
∑

𝑛=1

4
3
𝜋𝑅3

𝑛

(

𝑋𝑝

𝑣𝑎𝑡𝑝
−

𝑋𝑅𝑛

𝑣𝑎𝑡𝑚

)

. (17)

he first term is the sum on the entire solute content of all the voxels
f the system, regardless of their states (matrix of precipitate). Because
he composition on the precipitate voxels is fixed, the second term that
epresents the precipitate contribution includes the difference between
𝑝 and 𝑋𝑅𝑛

. Eq. (17) holds the advantage of being consistent with the
ass balance embedded in Eq. (14), such that 𝑁 𝑡𝑜𝑡

𝑎𝑡 remains constant
pon integration of Eqs. (10) and (14) if the concentration on the
recipitate do not evolve in time.

However, when the precipitates grow, their equilibrium composi-
ion evolves following the Gibbs–Thomson relation (8), such that both
ums of Eq. (17) are modified. In the general case, the discretized
olume 𝑉disc occupied by the precipitate on the grid that is embedded
n the first sum is different than 𝑉cont = 4𝜋𝑅3∕3 used in the second
um. Consequently, changing the value of the precipitate concentration
ields a small change in Eq. (17). In order to ensure mass conserva-
ion, the corresponding amount of solute is distributed on the matrix
urrounding the precipitate:

𝑁𝑎𝑡 = (𝑉disc − 𝑉cont)(𝑋new
𝑅 −𝑋prev

𝑅 ), (18)

here (𝑋new
𝑅 − 𝑋prev

𝑅 ) is the composition change of the precipitate
ttributed to the change of radius through Eq. (8).

This numerical model is implemented using C++/CUDA to harness

he computational efficiency of Graphics Processing Units (GPU). The
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Table 1
Material parameters used in the simulations. The diffusion coefficient
is computed as 𝐷 = 𝐷0 exp

(

− 𝑄
𝑅𝑇

)

. The solubility product is given by

log10(𝐾) = − 𝐴
𝑇
+ 𝐵 + 𝐶

𝑇 2 . The lattice parameter is given by 𝑎 = (4𝑣𝑎𝑡𝑚 )
1∕3.

Material parameters

matrix atomic volume 1.6607 × 10−29 m3

precipitate atomic volume 1.7293 × 10−29 m3

𝐴 = 2576K
solubility product coefficients 𝐵 = 0.1158

𝐶 = −43 018K2

surface energy 0.12 Jm−2

𝐷0 5.3 × 10−4 m2 s

𝑄 174 kJ∕mol

𝑥 1

𝑦 3

highly parallelized architecture of GPU is especially adapted to the
integration of Eq. (12) and to the parallel treatment of precipitates.

In the sharp interface approach proposed here, the grid-spacing 𝛥𝑥
is decorrelated from the capillary length and can be chosen of the
order of the precipitate size. In practice, we show in Appendix B that
the numerical model accurately reproduces the growth of precipitates
in a supersaturated matrix if their radius satisfies 𝑅 > 𝛥𝑥, while the
growth rate obtained for 𝑅 < 𝛥𝑥 is impaired by significant numerical
errors. This is attributed to the numerical description of solute fields
around discrete precipitate shapes. As justified in Appendix B, the vast
majority of precipitates in our simulations have a radius 𝑅 > 0.5 nm,
thereby justifying to consider 𝛥𝑥 = 0.5 nm. Also, the time-step is taken
as 𝛥𝑡 = 0.1𝛥𝑥2∕𝐷 to ensure stability of the Euler scheme.

The typical simulated volumes investigated in this article are 128 ×
128 × 128 nm3. The use of modern GPU cards such as the NVIDIA
GeForce RTX 3080 Ti, allows to simulate a representative volume
over significant time scales thanks to a short computational time of
approximately 2 × 10−8 s per unit voxel per time step.

2.3. Materials parameters

We use material parameters pertaining to Al-Sc alloy. In this system,
the addition of a small amount of Sc leads to the precipitation of Al3Sc
stoichiometric precipitates.

This system presents the advantage of being experimentally well
described [42,44]. In addition, the nanometric precipitates forming in
this alloy are spheroidal, which suits well our model’s assumptions.

The parameters used in the simulations are listed in Table 1. The
values of 𝐷0, 𝑄, and the solubility product coefficients 𝐴, 𝐵, and 𝐶
where obtained using the software Thermo-Calc, with the databases
TCAL4 and MOBAL3 [49]. 𝐴, 𝐵, and 𝐶 were numerically determined by
fitting Eq. (3) against the solubility limit obtained from Thermo-Calc.

3. Validations

3.1. Model validations

In order to insure that the model implementation is valid, two vali-
dation tests are performed. We first check the non-stationary growth
of a precipitate in a supersaturated matrix by comparing its growth
kinetics to an analytical solution [50]. Second, we monitor the total
amount of solutes in four different situations representative of precipi-
tate nucleation, growth, coagulation and disappearance, to check mass
conservation in these different situations.

3.1.1. Non-stationary growth
In order to verify the accuracy of the numerical implementation,

simulations of the growth of isolated precipitates in supersaturated
5 
Fig. 3. Comparison between model results and the analytical solution for non-
stationary growth. (a) shows the evolution of the radius for supersaturation of 0.1, 0.2,
0.5, 1, 2 and 5 at.% (bottom to top). (b) shows the relation between the supersaturation
and the peclet number, comparing the numerical results with two analytical predictions
accounting for stationary and non-stationary growth.

environments are performed. The simulations are initialized with a pre-
cipitate of radius 𝑅 = 0.5 nm, growing in a cubic cell of volume 1283nm3.
Periodic boundary conditions are employed in all directions. The simu-
lations are performed for different initial matrix concentrations ranging
from 𝑋0 = 0.1 at% to 𝑋0 = 5 at% and the equilibrium composition at
the precipitate/matrix interface is kept at 𝑋𝑒𝑞 (i.e. the Gibbs–Thomson
effect is not considered). Moreover, the atomic volumes of the matrix
and the precipitate are here considered equal for simplicity reasons.
The growth kinetics of precipitates obtained numerically are shown in
Fig. 3.a and are fitted against parabolic laws of the form

√

4𝐷𝑝𝑡 (dash
lines) to deduce the corresponding Péclet number 𝑝.

The numerical results are compared to the analytical solution pro-
posed by Zener [50]. This solution is valid for the growth of a spherical
precipitate, with an initial radius 𝑅 = 0, growing in a supersatu-
rated infinite matrix with a constant concentration 𝑋𝑒𝑞 at the precipi-
tate/matrix interface. With these assumptions, the time-integration of
the growth Eq. (11) coupled with the resolution of the time-dependent
diffusion equation can be performed analytically and yields a relation
between the composition of the supersaturated matrix 𝑋0 and the Péclet
number of the problem defined as 𝑝 = 𝑅�̇�

2𝐷 :

𝑋0 −𝑋𝑒𝑞

𝑋𝑝 −𝑋𝑒𝑞
= 𝑝3∕2𝑒𝑝 ∫

∞

𝑝

𝑒−𝑥

𝑥3∕2
𝑑𝑥. (19)

This equation defines a bijective relation between the matrix composi-
tion 𝑋0 and the Péclet number 𝑝 that determines the growth kinetics.
This relation is shown with a continuous red line on Fig. 3(b) and allows
to compute numerically the Péclet number corresponding to a given
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Fig. 4. Mass conservation during (a) nucleation, (b) coagulation, (c) growth and (d)
shrinkage and disappearance, with snapshots of the simulated system at the beginning
and at the end of the simulation. In all cases the horizontal line showing the deviation
from the initial concentration in the system highlights the perfect conservation of total
solute quantity throughout the simulation.

matrix composition 𝑋0. Once 𝑝 is known, integrating 𝑝 = 𝑅�̇�
2𝐷 gives the

growth kinetics of the precipitate:

𝑅(𝑡) =
√

4𝐷𝑝𝑡. (20)

In the limit of small supersaturation, the growth kinetics is slow
compared to the equilibration of the solute field, such that the diffusion
6 
equation can be considered to be stationary (i.e. of ∇2𝑋 = 0) along
the precipitate growth. This stationary assumption is often considered
in the mean-field models for precipitation [10,11]. With this assump-
tion, the solution of the diffusion problem is straightforward and the
precipitate radius growth as:

𝑅(𝑡) =

√

2𝐷𝑡
𝑋0 −𝑋𝑒𝑞

𝑋𝑝 −𝑋𝑒𝑞
, (21)

such that the Péclet number associated to this stationary growth is:

𝑝 =
𝑋0 −𝑋𝑒𝑞

2(𝑋𝑝 −𝑋𝑒𝑞)
. (22)

This relation is shown with a dashed line on Fig. 3(b). As expected,
the difference with the non-stationary solution is negligible for small
supersaturations and becomes increasingly larger away from this limit.
As an example, for a matrix concentration 𝑋0 = 2%, the stationary
solution underestimates the Péclet number by 34% compared to the
non-stationary case.

The precipitate growth rates obtained with the full-field model and
reported in Fig. 3 show an excellent agreement with the non-stationary
analytical solution. Fig. 3(a) shows the evolution of the radius with
time for different concentrations. The results of the simulations are
represented with symbols and compared with the analytical solution
shown with full lines. For higher matrix concentration, a slight differ-
ence appears at the end of the simulation. This is attributed to the finite
dimensions of the simulation cell and the interactions of solute fields
with periodic images.

Fig. 3(b) shows the relation between the initial concentration and
the Péclet number obtained from non-stationary and stationary growth
solutions. The Péclet number obtained from the fit of the numerical
results are reported with symbols and fall on the analytical solution for
non-stationary growth. This excellent agreement validates the imple-
mentation of precipitate growth and solute diffusion in the numerical
model.

3.1.2. Mass conservation
The second validation consisted in monitoring mass conservation

along the simulation. As explained above, a special care has been
brought to insure that the quantity of solutes in the simulation cell
is conserved along the different stages of the simulations: nucleation,
growth, coagulation, disappearance. In order to validate mass con-
servation, simulations have been performed on simple configurations
representative of these stages.

The results of the simulations for each case are given in Fig. 4 for
four specific cases: (a) nucleation, (b) coagulation, (c) growth and, (d)
shrinkage and disappearance of a precipitate. The simulations were
performed in a volume 643nm3 with a matrix concentration of 0.8
at.%, except for case (d), where it was set at 0.05 at.% to trigger the
shrinkage of the precipitate. The snapshots at the start and the end of
each simulations are shown. For nucleation (a) and coagulation (b), the
evolution of the number of precipitates is given, and for growth (c) and
shrinkage (d), the evolution of the radius is shown. In all situations, the
total quantity of solutes is perfectly conserved through the simulation,
hence validating each steps of the simulation.

4. Results and comparison with a mean-field model

Full field simulations were performed for different initial concen-
trations ranging from 1 at.% to 2.5 at.%, which correspond to final
precipitate volume fractions ranging from ∼ 4% to ∼ 10% approxi-
mately.

To better assess the influence of solutal impingement and precipitate
coagulation accounted for in the full-field approach, the results are
compared with an Eulerian implementation of a mean-field approach
taken from Ref. [51] and described in details in Appendix A. This
mean-field approach describes the precipitate microstructure with a
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Fig. 5. Comparison of the mean-field and full-field model for an alloy concentration 𝑋0 = 1 at%. Full-field results are averaged over five independent simulations. Evolutions of
(a) the average radius, (b) the volume fraction and (c) the precipitate density, compared with an Eulerian mean-field model. (d) Precipitate size distribution at the end of the
simulation, comparison with the LSW theory. (e–h) precipitate microstructures at time 𝑡 = 0.045 s, 𝑡 = 0.909 s, 𝑡 = 22.72 s and 𝑡 = 454.3 s, represented by stars on (a).
precipitate size distribution 𝑓 (𝑅). The ingredients incorporated in this
model are similar to the ones used in the full-field formulation: first,
the nucleation of precipitates are modeled as described in Section 2.1
that gives a nucleation rate of precipitate of size 𝑅∗

𝑘𝑇 as function of the
matrix concentration 𝑋𝑚. The growth rate of precipitates of size 𝑅 is
obtained by solving the stationary diffusion equation ∇2𝑋 = 0 in an
infinite medium surrounding the precipitate. Each precipitate size 𝑅 is
then associated to a growth rate 𝑣(𝑅), which controls the evolution of
the precipitate density 𝑓 (𝑅) during growth and coarsening.

In their original formulations [10], these mean-field models assume
that every precipitate interacts with an infinite matrix and therefore
neglect the role of solutal impingement on their growth rate. Neverthe-
less, these formulations can be improved by incorporating the solutal
impingement associated to neighboring precipitates in an approximate
manner [20–22]. A way to account for this effect was proposed by
Wang et al. [8] and consists in incorporating a screening length in the
growth rate of precipitates. In the following, we refer to this extension
of the model as the screened mean-field model. The details of the mean-
field models used in this section (with and without incorporating the
screening length) are given in Appendix A.

In the following, the evolution of the average radius, the volume
fraction and the precipitate density are compared. A special attention
7 
is brought to highlight the differences between both mean-field and
full-field approaches and to attribute them to the models’ assumptions.

4.1. Example of precipitate evolution at 𝑋0 = 1%

At first, full-field simulations are performed with a nominal concen-
tration of 𝑋0 = 1 at.%. The results are averaged over five independent
simulations and are shown in Fig. 5; the snapshots (e–h) show the time
evolution of the precipitate microstructure during a simulation. The
comparison between the full-field and the mean-field approaches shows
a satisfactory agreement. Both models describe the different stages of
precipitation as shown in Fig. 5(a) and (c). During the first stage, the
nucleation of new precipitates occurs, and they grow by consuming the
solute in their vicinity. This growth stage leads to an increase in pre-
cipitate size until the average matrix composition becomes comparable
to the equilibrium composition given by the Gibbs–Thomson relation.
Then a transition from growth to coarsening occurs: the equilibrium
composition of small precipitates is larger than for larger ones, thereby
triggering composition gradients and solute fluxes from small to large
precipitates. Consequently, the large precipitates grow while the small
ones shrink and disappear. At this point, the evolution of the precipitate
mean radius and density follows a transition plateau. As shown in
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Fig. 6. (a) comparisons of the total number of precipitates in full-field and mean-field
models. (b) Comparison of the matrix concentrations in mean-field and in full-field for
𝑋0 = 1 at.%, with the nucleation rate. The comparison is done at 𝑡 = 0.45 s, indicated
with a star on panel (a).

Fig. 5(c), the precipitates density obtained with both models has a
slightly different evolution which will be discussed in Section 4.2.
In the coarsening regime, larger precipitates continue to grow while
smaller ones disappear, leading to an increase of the mean radius
and a decrease of the precipitate density. A slight difference between
both models appears in the evolution of the mean radius in Fig. 5(a)
which will be discussed in Section 4.3. Finally, Fig. 5(d) depicts the
precipitate size distribution at the end of the simulation (i.e. at 𝑡 =
454 s). This probability density can be compared to the prediction of the
LSW theory that described the steady-state regime valid at long times.
Differences can be seen between the different approaches and will be
discussed in Section 4.4.

4.2. Numbers of precipitates: the role of nucleation and coagulations

As shown on Fig. 5(c), the number of precipitates in the simulated
volume varies differently between the full-field and the mean-field
model after reaching a peak value at 𝑡 ≃ 0.3 s. These variations
are attributed to the coagulation (absent of mean-field models) and
nucleation events whose treatment differ slightly in the full-field and
mean-field models.

The first mechanism that influences the total number of precipitates
is the nucleation stage. Fig. 6(a) shows the number of nucleation
events for four initial matrix concentrations for both mean-field and
full-field approaches. It shows that there are always more nucleation
events in full-field than in mean-field. This can be explained by the
composition heterogeneities in the simulated volume emerging from
the spatial description of the concentration field in the full-field ap-
proach. In contrast, the mean-field approach assumes that nucleation
occurs in a matrix of homogeneous composition. This is illustrated in
8 
Fig. 7. Ratio between the cumulated number of coagulations and the cumulated
number of nucleated precipitates for the full-field model.

Fig. 6(b) which represents the distribution of the solute concentration
in the full-field simulation volume at time 𝑡 = 0.45 s (histogram). The
vertical dashed line represents the matrix concentration used in mean-
field at the same time. The nucleation rate, shown with a continuous
line, evolves exponentially with the solute concentration. While the
concentration used in the mean field approach leads to a low nucleation
rate, a fraction of the full-field voxels are associated with a high
nucleation rate, thereby triggering additional nucleations. The number
of nucleation events is therefore higher for the full-field model as
shown in Fig. 6(a). This effect is found to be stronger for higher
alloy compositions because the composition heterogeneities are more
pronounced, leading to a larger difference between both models.

Moreover, the full-field approach also takes into account precip-
itates coagulations: when precipitates get close one to another, they
coagulate, which also affects the number of precipitates in the system.
Fig. 7 shows the ratio between the cumulated number of coagulations
and the cumulated number of nucleated precipitates for the different
initial concentrations. During the growth stage, all the precipitates
grow, increasing their probability of colliding with neighbors, which
leads to a surge in the number of coagulations. When the system enters
the coarsening stage, the precipitate density decreases and coagulations
become less likely, which explains the saturation of the curve in Fig. 7.
As expected, the number of coagulations at the end of the simulation
increases with the alloy composition. This figure also shows the high
impact of coagulations on the evolution of the microstructure: the ratio
almost reaches 50% for 𝑋0 = 2.5%. For such a high coagulation rate,
almost every precipitate undergoes a coagulation event.

The consequence of both the nucleation and coagulations effects
discussed above can be seen on Fig. 8 that depicts the precipitate
density evolution obtained from full-field and mean field models for
𝑋0 = 1% and 𝑋0 = 2.5%.

As shown earlier, the number of nucleation is higher in full-field.
However, the precipitate density decreases as soon as coagulation
events start occurring. The effect is more pronounced for higher alloy
compositions: for 𝑋0 = 2.5% (see Fig. 8.b), even though the full-field
model predicts more nucleation events, the larger number of coagula-
tions leads to a peak precipitate density 20% lower than the prediction
of the mean-field model. In addition, because most coagulations occur
within a short time window, the time-evolution of the precipitate den-
sity is significantly different than predicted by the mean-field approach
and shows a characteristic shoulder when the coagulation rate goes
down.

4.3. Mean radius evolution and coarsening rate

Coarsening of the precipitate population originates from the Gibbs–
Thomson relation that relates the radius of the precipitates to their
equilibrium compositions and is permitted by volume diffusion of
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Fig. 8. Results for an initial concentration at 1 at.% (a) and 2.5 at.% (b) : comparisons
of the total number of precipitates in full-field and mean-field, and number of
nucleations and coagulations in full-field.

solutes in the matrix phase. In this situation, scaling arguments [52]
can be used to show that the average radius �̄� grows as a function of
time as:

�̄�3(𝑡) = �̄�3
0 + 𝑘(𝑡 − 𝑡0), (23)

where �̄�0 denote the radius at arbitrary time 𝑡0 and where 𝑘 is referred
to as the coarsening rate. Lifshitz, Slyozov and Wagner (LSW) were
the first to propose an estimate of this coarsening rate [5–7] valid in
the steady state of the coarsening. Adapting the LSW theory to A𝑥B𝑦
stoichiometric precipitates and to the dilute limit 𝑋0 ≪ 1 (valid for the
Al-Sc system) [53], we obtain:

𝑘LSW = 4
9

(

𝑥 + 𝑦
𝑦

)2
𝐷𝑙0𝑋0. (24)

where 𝑙0 is the capillary length defined in Eq. (9).
However, in full-field simulations, the coarsening rate can differ

from this estimate because (i) the solute interactions between neigh-
boring precipitates are ignored in the LSW theory, (ii) the system can
be far away from the steady-state where Eq. (24) is valid and (iii) the
influence of the coagulation events can be non-negligible.

To investigate these effects, the results of the full-field model are
compared with two versions of the mean-field model: its original
version that assumes isolated precipitates in a infinite medium (valid
for vanishing volume fraction) and the screened version that accounts
for solutal impingement in an average way [8].

Fig. 9 shows the evolution of the mean radius for four initial
concentrations and compares the results of the full-field model (green
continuous line) and the mean-field approaches with and without the
9 
Fig. 9. Evolution of the average radius for the full-field model and the mean-field
model with and without the screening length accounting for solutal impingement. The
full-field results are averaged over five independent simulations.

Fig. 10. Evolution of the ratio 𝑘∕𝑘LSW for the different models for 𝑋0 = 1 at%. The
screened mean-field model is fitted with 𝑘(𝑡) = 𝑘∞ + 𝐴∕ log(𝑡).

screening term (dashed curves). To smooth out the influence of stochas-
tic events appearing in full-field models because of the finite size of the
system, the results are averaged from five independent simulations.

In all four cases, the non-screened version of the mean-field model
(dashed pink curves) underestimates the coarsening rate compared
to the full-field model. In addition, we highlight that incorporating
the screening length in the mean-field model leads to a much better
agreement with the full-field results. This remarkable agreement can be
seen as a validation of the screening theory that captures the influence
of solutal impingement. Deviations between both approaches are visible
for 𝑋0 = 2.5 at.% (Fig. 9(d)) and can be attributed to the role of
coagulations that is important at high volume fraction (see Fig. 7)
and is not incorporated into the mean-field approaches. At long times
(e.g. 𝑡 > 10 s), the role of coagulations vanishes, which explains why
the radius evolution for both the full-field and the mean-field screened
are eventually getting closer on Fig. 9.d.

To discuss in more details the differences between the various ap-
proaches, the time-dependent coarsening rate is determined by fitting
the evolution of the radius, starting at a time 𝑡0 corresponding to the
beginning of the coarsening stage and using a sliding time window of
duration 50 s.

Fig. 10 shows the time evolution of the coarsening rate for different
models normalized by the value 𝑘LSW given in Eq. (24). The black
dashed horizontal line therefore represents the prediction of the LSW
theory. In addition, the brown dashed line represents the steady-state
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of the screened mean-field approach predicted by Wang et al. [8] and
incorporating the screening length.

The oscillations observed for the full-field model are due to the finite
number of precipitates in the simulated volume, inducing stochasticity
on the estimation of the coarsening rate. These fluctuations become
more important at longer times because the number of precipitates
decreases with time. Despite these oscillations, the coarsening rate ob-
tained from the full-field model matches the results obtained from the
mean-field screened model, reinforcing the agreement between both
approaches discussed above. On the other hand, the results obtained
with the non-screened version of the mean-field model underestimates
significantly the coarsening rate.

Moreover, it can be noted that the results obtained with the full field
and the mean field approaches are significantly above the horizontal
baselines representing the steady state and appear to converge slowly
towards these values. This slow convergence highlights the role of a
long transient regime before reaching a steady-state coarsening rate. In
particular, the coarsening rate obtained with the screened mean-field
model is fitted with 𝑘(𝑡) = 𝑘∞ + 𝐴∕ log(𝑡) (see the thick black line on
Fig. 10), revealing that the coarsening rate converges logarithmically
towards the steady-state value.

This long transient coarsening stage has been discussed in the
literature: in Ref. [54], Chen and Voorhees used a mean-field approach
similar the one used here to demonstrate that the coarsening rate
converge towards the steady-state prediction at long times. They also
show that the convergence rate strongly depends on the shape of the
initial distribution and slow convergence similar to the one discussed
here are obtained by starting from modified log-normal distributions.
This type of slow convergence has also been shown to be consistent
with experimental results [55] and with phase-field simulations [34].

4.4. Evolution of the size distribution

In addition to the evolution of the mean radius during the coarsen-
ing phase, the LSW theory also predicts the shape of the particles size
distribution in the steady-state coarsening regime [5–7]. The mathe-
matical description of this steady-state distribution can be found in the
literature [5,6] and it is represented with a continuous black line in
Fig. 11(a), (b) and (c).

In contrast with the LSW solution, both the mean-field and full-field
models capture the time-dependent evolution of the size distribution
from the nucleation to the coarsening stages. Fig. 11(a) displays the
size distribution obtained for the 𝑋0 = 1 at.% alloy at 𝑡 = 0.09 s during
the nucleation stage. Both formulations of the mean-field approach
yield similar distributions that result from the time evolution of the
nucleation rate (Eq. (6)) combined with the growth rate: the larger
precipitates have nucleated first with a nucleation rate limited by
the incubation time and have undergone the longest growth while
the smallest precipitates have nucleated later and are more numerous
because of the diminishing effect of the incubation time. It results in
a right-skewed distribution typical from the nucleation stage [56,57].
The distribution obtained from the full-field model follows the same
trends because the same expression of the nucleation rate is used;
the differences obtained between both approaches at these short time-
scales are attributed to the influence of the time-dependent diffusion
equation integrated in the full-field model while the growth rate used
in the mean-field approach is obtained from the stationary diffusion
equation. It seems important to highlight that the distributions obtained
at short time-scales with the different models differ significantly from
the LSW distribution that is only valid in the steady-state coarsening
stage.

Fig. 11(b) compares the size distribution at a intermediate time 𝑡 =
45 s that corresponds to the coarsening stage. Compared to Fig. 11(a),
the distributions obtained from the different models have transitioned
to left skewed distributions that resemble the LSW function. At this
stage, the differences between the mean-field model and the LSW
10 
Fig. 11. Evolution of the size distribution for a nominal concentration 𝑋0 = 1 at.%.
(a–c) Size distribution of the precipitate population for the full-field and the mean-field
models after a heat treatment of (a) 0.09 s, (b) 45 s and (c) 454 s. (d) time-evolution
of the skewness of the size distribution obtained with different models. The full-field
results are averaged over five independent simulations.

show the influence of the transient coarsening stage on the precipitate
distribution evidenced previously [51,54]. Interestingly, the precipitate
distribution obtained with the full-field model appears significantly
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Fig. 12. Evolution of the skewness with time for four different initial concentration
in solutes. The dotted lines represent the values of the skewness averaged over the
last 5000 time-steps (∼ 2𝑠) of the full-field simulation. The dash-lines represent the
time-evolution of the skewness obtained from the mean-field screened model.

more symmetric than the mean-field predictions, with a surplus of
large precipitate. This can be attributed to the influence of coagulation
events that combine two precipitates of average sizes to form a large
precipitate.

To compare the distributions obtained after a long coarsening stage,
Fig. 11(c) shows precipitates distributions at 454 s. The distribution
obtained from the mean-field model (non-screened) converges slowly
towards the LSW distribution: the differences between them are at-
tributed to the distance from the steady-state which is a consequence of
the long transient regime discussed in Section 4.3. On the other hand,
the distribution obtained with the screened version of the mean-field
model is significantly less peaked, this difference being a consequence
of the solutal impingement. This is also supported by the fact that the
distribution obtained from the full-field model matches well this latter
one. Comparing the full-field distributions shown in Figs. 11(b) and
11(c) reveals that the effect of coagulation events wears off with time
because such events become less likely upon the drop of the precipitate
density.

Figs. 11(a), (b) and (c) reveal that the precipitate distribution
shifts from a right-skewed distribution characteristic of the nucleation
stage to a left-skewed distribution characteristic of the coarsening
stage and comparable to the LSW theory. To better characterize the
time evolution of the distribution, it is useful to follow the evolution
of the skewness 𝛾, a dimensionless coefficient that characterizes the
asymmetry of a distribution. It is defined as the third standardized
moment and is computed as

𝛾 =
𝜇3
𝜇3∕2
2

(25)

where 𝜇3 and 𝜇2 are the central moments of order 2 and 3 of the
distribution. A positive (respectively negative) skewness translates the
fact that the right (resp. left) tail of the distribution is more pronounced.
A skewness equal to 0 corresponds to a symmetric distribution.

Fig. 11(c) displays the time evolution of the skewness obtained from
the different models. In the first nucleation stage, the distributions
exhibit a positive skewness characterizing the distribution shown in
Fig. 11(a). Between 𝑡 ≃ 0.1 s and 𝑡 ≃ 1 s, the skewness drops from
positive to negative values which translates the transition between the
nucleation and growth stages to the coarsening stage.

As expected, the skewness obtained with the mean-field (non
screened) model converges to the skewness of the LSW distribution
represented with an horizontal dash line. In contrast, the screened
mean-field model converges to a higher value, a consequence of the
solutal impingement. The skewness obtained with the full-field model
follows the same trend as for mean-field approaches. It remains higher
during the coarsening stage and eventually drops to a value close to the
one obtained with the mean-field screened model. This translates the
11 
fact that during the transient coarsening regime, the distributions sim-
ulated with the full-field model are significantly more symmetric than
the ones obtained from the mean-field approaches, as a consequence of
the coagulation events.

The effect of coagulation events on the symmetry of the precip-
itate density is amplified for higher volume fraction. Fig. 12 com-
pares the time evolution of the skewness for different alloy concen-
trations. The symmetry of the distribution shape increases with the
precipitate volume fraction, significantly more than predicted by the
screened mean-field model that only accounts for the role of solutal
impingement.

5. Conclusion

We present here a full-field model for precipitation in which the
precipitates are described by a shape function with sharp interfaces.
This formulation allows for a gain of efficiency compared phase-field
models and enables to simulate representative volumes containing a
large population of precipitates over long time-scales. The results of
the full-field approach are compared to mean-field numerical models
to assess the influence of solutal impingement and coagulations of
precipitates on the different stages of the nucleation process.

First, we evidenced that more nucleation events occur in the full-
field model as compared to the mean-field approach. This is attributed
to the spatial description of the concentration fields that take different
values while the mean-field approach assumes a single-valued matrix
concentration.

This effect is compensated by the influence of coagulations of
neighboring precipitates that triggers a drop of the total number of
precipitate after their nucleation. As a consequence, the peak number
of precipitates is slightly lower in full-field models compared to mean-
field approaches. Despite these differences, the evolution of the average
radius obtained with full field matches well the prediction of mean-field
approaches, especially the screened mean-field model that accounts for
solutal impingement in an average way.

Our results also highlight the influence of the long transient regime
that approaches asymptotically the steady-state predictions [8,54]. Dur-
ing this transient regime, the coarsening rate is significantly higher than
its steady-state value and the precipitate distribution is significantly
more symmetric. The comparison between full field and mean field
results also put in evidence the role of coagulation events on the precip-
itate distribution: coagulations lead to the formation of larger precip-
itates and thereby symmetrize the size distribution. Because the num-
ber of coagulations drops during the coarsening stage, their influence
slowly wears off along the coarsening stage.

Size distributions observed experimentally in metallic alloys can
deviate significantly from the LSW size distribution. In particular, a
number of previous studies evidenced symmetric distributions or right-
skewed log-normal distributions of precipitate sizes [21,58–61]. The
present work shows that these differences can be attributed to multiple
effects:

• the role of solutal impingement increases with the volume frac-
tion of precipitate and leads to more symmetric steady-state
distributions [8].

• the influence of the long transient coarsening regime and the
slow convergence of the precipitate distribution to a steady-state
LSW-like distribution, as evidenced previously [54,59].

• the influence of precipitate coagulations that lead to a higher
number of large precipitates and symmetries the size distribution.

At this point, we also have to discuss some drawbacks of the
current implementation of the full-field model. In this study, there is
no limitation to the coagulation of precipitates, while in Al-Sc alloys,
the coagulation of ordered Al3Sc precipitates is limited by the existence
of four translational variants [25] that prevents the coagulation of
precipitates with different variants. Such effect can be included in the
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present full-field model by attributing a variant (1, 2, 3 or 4) at random
to precipitates and allowing the coagulation of neighboring precipitates
only if their variants are identical. Preliminary results including this ef-
fect reveals that the number of agglomerations is significantly reduced,
but the general trends discussed throughout the paper remain valid.

In addition, coherent precipitates in metallic alloys also interact
through elastic fields [25], which can modify their evolution [62,63]. It
would be desirable to extend the current full-field model to account for
these effects. This could be done by computing the elastic energy of a
population of precipitates and adjusting the position of the precipitates
to minimize this energy.

Furthermore, the results presented here focus on spherical precip-
itates while a majority of technologically relevant systems (in partic-
ular Al and Ni-based alloys) display non-spherical precipitates [1,2].
We note that it is straightforward to extent the present model to
non-spherical precipitates by using different shape functions, and by
adjusting the Gibbs–Thomson effect to these new geometries [64,65].

Also, this article focuses on homogeneous isothermal thermal treat-
ments but it would be straightforward to use the full-field model to
investigate the influence of a complex heterogeneous thermal history
encountered during processes such as additive manufacturing and weld-
ing. The full-field model could be used to assess the domain of validity
of mean-field approaches for complex thermal treatment that involve
sharp thermal gradients and high heating/cooling rates.

One of the advantage of this meso-scale full-field model is that
it generates representative microstructures obtained from nucleation,
growth and coarsening stages, and encodes the spatial correlations
between precipitates resulting from these stages. A natural prospect
of this work therefore consists in using these microstructures in dis-
location dynamics numerical approaches [66,67] to model the dislo-
cations/precipitates interactions in order to predict the yield stress of
the alloy and discuss more carefully the assumptions of the mean-field
approaches commonly used the relate the mechanical properties of the
alloy to the precipitate microstructure [1,68,69].
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Appendix A. Numerical integration of the mean-field model

In order to understand how the full-field character of the model
influences the results, we compare it with a mean-field approach for
precipitation. This type of model was first introduced by Kampmann
and Wagner [70] and have been largely used for precipitation kinetics
modeling [2,10,11,51,71–73]. In these approaches, the precipitate mi-
crostructure is represented by a size distribution discretized in a finite
number ‘‘classes’’ that evolve according to the nucleation, growth and
shrinkage of precipitates.

This type of model can be divided into two categories depending
on the treatment of the size distribution: in the Lagrangian-type mod-
els [2,11], a ‘‘class’’ gathers precipitates that nucleated at the same time
and the radius of each class evolves in time from the integration of the
growth equation. In contrast, in the Eulerian-type approaches [10,51,
71,72], the size distribution is discretized in classes of finite width such
that precipitates change classes along the simulations. Both methods
offer advantages discussed in Ref. [11], and we opted for the latter case
because of its natural connection with the size distribution employed
in the LSW theory. In particular, the mean-field model employed here
and its numerical implementation are similar with the ones described
in Ref. [51] and are briefly recalled in the following.

We note 𝑓 (𝑅) the precipitate size distribution per unit volume.
The nominal alloy composition 𝑋0 is distributed between precipi-

tates and matrix, such that the atomic fraction in the matrix is given
by:

𝑋𝑚 =
𝑋0 −𝑋𝑝𝜙𝑝

𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

1 − 𝜙𝑝
, (A.1)

here

𝑝 =
4𝜋
3 ∫

+∞

0
𝑓 (𝑅, 𝑡)𝑅3𝑑𝑅 (A.2)

is the volume fraction of precipitates.
Considering that the radius of each precipitates evolves smoothly in

time, the size distribution 𝑓 (𝑅) is subjected to the following continuity
equation:
𝜕𝑓 (𝑅, 𝑡)

𝜕𝑡
+ 𝜕

𝜕𝑅
(𝑣(𝑅, 𝑡)𝑓 (𝑅, 𝑡)) = 𝑑𝑁

𝑑𝑡
𝛿(𝑅 − 𝑅∗

𝑘𝑇 ) (A.3)

where 𝑑𝑁
𝑑𝑡 is the nucleation rate and 𝑅∗

𝑘𝑇 is the critical nucleation
radius. For the sake of consistency with the full-field model described
in this work, we consider that 𝑑𝑁

𝑑𝑡 is given by Eq. (6) taken for 𝑋 = 𝑋𝑚
and that the nucleation radius is given by Eq. (7).

The growth rate of the precipitates is obtain from resolving the
stationary diffusion equation around an isolated precipitate and com-
puting the flux of solutes towards the precipitate. We thus obtain:

𝑣(𝑅, 𝑡) = 𝐷
𝑅

𝑋𝑚(𝑡) −𝑋𝑅
(

𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝 −𝑋𝑅

) . (A.4)

here 𝑋𝑅 is the equilibrium composition at the precipitate/matrix
nterface given by Gibbs–Thomson relation Eq. (8). To avoid nu-
erical instabilities related to the divergence of the Gibbs–Thomson

quation for small radii, we limit 𝑋𝑅 by a maximum value 𝑋𝑚𝑎𝑥 =
1
2

(

𝑋𝑚 + 𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝

)

. This quantity is chosen based on the characteristic

ime 𝑅2∕𝐷 to dissolve a precipitate or radius 𝑅. Overall, the equi-
librium composition at the precipitate/matrix interface is given by:

𝑋𝑅 = min

(

1
2

(

𝑋𝑚 +
𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝

)

, 𝑋𝑒𝑞 exp
(

𝑥 + 𝑦
𝑦

𝑙0
𝑅

)

)

. (A.5)

The growth and coarsening of precipitates naturally arises from the
time integration of Eqs. (A.4) and (A.5).
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Implementing numerically the model requires to discretize the dis-
tribution 𝑓 (𝑅, 𝑡) in a finite number of classes of size 𝛥𝑅 while the time
is discretized in steps 𝛥𝑡.

The nucleation term of Eq. (A.3) is simply incorporated by adding
𝑑𝑁
𝑑𝑡 𝛥𝑡 precipitates of size 𝑅∗

𝑘𝑇 at each time steps. This quantity is
distributed pro rata between classes of radii 𝑅𝑛 and 𝑅𝑛+1 (𝑅𝑛 < 𝑅∗ <
𝑅𝑛+1). For clarity reasons, this source term is not accounted for in the
following equations that detail the numerical scheme.

After discretization of Eq. (A.3) with finite differences, we obtain:

𝑓 𝑡+𝛥𝑡
𝑖 = 𝑓 𝑡

𝑖 −
𝛥𝑡
𝛥𝑅

[

𝐹 𝑡
𝑖+ 1

2
− 𝐹 𝑡

𝑖− 1
2

]

(A.6)

where 𝐹 𝑡
𝑖+1∕2 denote the fluxes of precipitates between classes of radius

𝑅𝑖 and 𝑅𝑖+1.
Several choices can be made for the expression of 𝐹 𝑡

𝑖+1∕2. A simple
solution is to use a classical upwind scheme [11,71] that remains
numerically stable for sharply varying distribution as obtained in the
first nucleation stage. However, the simple upwind scheme is impaired
by spurious numerical diffusion terms [74] and does not allow to inte-
grate precisely the transport equation (A.3) for smooth size distribution
encountered at the later coarsening stage. Following Ref. [51], the
upwind scheme is corrected with an anti-diffusion term of the form:

𝐹𝑖+ 1
2
= 𝐹 up

𝑖+ 1
2

+ 1
2
𝑣𝑖+ 1

2

(

1 − 𝛥𝑡
𝛥𝑅

|𝑣𝑖+ 1
2
|

)

(𝑓𝑖+1 − 𝑓𝑖)𝛷𝑖+ 1
2
, (A.7)

where

𝑣𝑖+ 1
2
= 1

2
(

𝑣𝑖 + 𝑣𝑖+1
)

, (A.8)

and

𝐹 up
𝑖+ 1

2

=

⎧

⎪

⎨

⎪

⎩

𝑓𝑖𝑣𝑖+ 1
2
, if 𝑣𝑖+ 1

2
> 0

𝑓𝑖+1𝑣𝑖+ 1
2
, if 𝑣𝑖+ 1

2
≤ 0.

(A.9)

The term 𝛷𝑖+1∕2 is a flux limiter that must converge to 0 (respec-
tively 1) for sharply (resp. smoothly) varying distributions. To quantify
this character, we introduce a smoothness parameter defined as

𝜃𝑖+ 1
2
=

⎧

⎪

⎨

⎪

⎩

𝑓𝑖−𝑓𝑖−1
𝑓𝑖+1−𝑓𝑖

, if𝑓𝑖+1 ≠ 𝑓𝑖

1, otherwise.
(A.10)

Several choices are possible to relate the flux-limiter 𝛷𝑖+1∕2 to the
smoothness parameter 𝜃𝑖+1∕2, and different flux-limiter functions have
been shown to be suited to different problem. In particular, trial and
error have demonstrated that an appropriate flux-limited function for
our case is:

𝛷(𝜃) = min

(

2𝜃, 2
√

𝜃
𝜃 + 3

)

. (A.11)

With this choice, the precipitate size distribution converges to the
expected LSW distribution for long coarsening times.

In practice, the numerical integration of the mean-field model con-
sists in iterating the following steps :

1. The matrix composition is computed using Eq. (A.1) with 𝜙𝑝 =
4
3𝜋

∑

𝑖 𝑓𝑖𝑅
3
𝑖 .

2. The nucleation rate is computed with Eq. (6) and precipitates of
radius 𝑅∗

𝑘𝑇 are added in the appropriate classes.
3. The growth rates 𝑣𝑖 corresponding to each class are computed

with Eq. (A.3).
4. The fluxes between classes are computed using Eq. (A.7).
5. The time-evolution of the precipitate density is integrated with

Eq. (A.6).
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Fig. B.13. Evolution of the precipitate radius for different grid spacings for a
precipitate growing in a supersaturated matrix of composition 𝑋0 = 1 at%.

The mean-field formulation described above considers that each
precipitate is isolated and uses the diffusion field in an infinite matrix
to obtain the growth-rate of Eq. (A.4). It does not account for solutal
impingement emerging from neighboring precipitates and is therefore
only valid in the limit of vanishing precipitate volume fraction.

To overcome this limitation, Wang et al. suggested to incorporate
the role of solutal impingement in an effective screening length 𝑅0
on the solute field. This treatment is well adapted to this mean-field
approach, as it only consists in multiplying the growth-rate of Eq. (A.4)
by a prefactor that increases with the precipitate volume fraction.
Following Ref. [8], the growth rate becomes:

𝑣(𝑅, 𝑡) = 𝐷
𝑅

𝑋𝑚(𝑡) −𝑋𝑅
(

𝑣𝑎𝑡𝑚
𝑣𝑎𝑡𝑝

𝑋𝑝 −𝑋𝑅

)

(

1 + 𝑅
𝑅0

)

(A.12)

with 𝑅0 =

√

⟨𝑅3
⟩

3⟨𝑅⟩𝜙𝑝

For vanishing precipitate volume fractions 𝜙𝑝 → 0, 𝑅0 diverges and
we recover Eq. (A.4). This version of the mean-field model is referred
to as ‘‘screened’’ in the main text of this article.

Appendix B. Choice of the grid spacing

The advantage of the sharp-interface full-field model presented in
this paper is that the grid-spacing 𝛥𝑥 used for the diffusion equation
can be chosen independently from the capillary length as the Gibbs–
Thomson relation is used to impose the precipitate concentration that
serves as a boundary condition to the diffusion problem. However, the
choice of the grid spacing also influences the imprint of the precipitates
on the discrete grid and the surrounding diffusion field.

To assess the influence of the grid spacing on the results, simulations
for the growth of isolated precipitates have been performed for different
grid spacing. We employ the same conditions as in Section 3 and use
an initial matrix concentration 𝑋0 = 1 at%. The time-evolution of the
precipitate radius is depicted in Fig. B.13. To highlight the differences
between the various cases, we only show the first stages of the growth
process; the influence of the grid-spacing tend to dissipate at longer
time where 𝑅 ≫ 𝛥𝑥.

Fig. B.13 reveals that the choice of 𝛥𝑥 influences the first stages of
the precipitate growth. In particular, the precipitate radius evolution
obtained for 𝛥𝑥 = 0.67 nm and 𝛥𝑥 = 1 nm is significantly different
from the results obtained for 𝛥𝑥 = 0.25 nm and 𝛥𝑥 = 0.5 nm, and
display a distinctive slope discontinuity at 𝑅 = 𝛥𝑥. Below this threshold,
the precipitate occupies a unique voxel, and the solute field in its
vicinity is not representative of the diffusion field around a spherical
object. This leads to an underestimation of the solutal flux and of the
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growth rate. However, it is worthy to note that the results obtained for
𝛥𝑥 = 0.25 nm and 𝛥𝑥 = 0.5 nm are very close to one another, revealing
that discretizing with 𝛥𝑥 = 0.5 nm is fine enough to reproduce the
appropriate growth rate.

In simulations discussed in Section 4 that incorporate nucleation,
growth and coarsening during a precipitation treatment, the precipitate
largely satisfy the condition 𝑅 > 𝛥𝑥 = 0.5 nm. Indeed, the nucleation
adius 𝑅∗

𝑘𝑇 vary between 0.36 nm et 0.48 nm depending on the concen-
ration of the alloy and the nucleated precipitates quickly grow passed
= 𝛥𝑥. In addition, when the precipitates shrink, they are removed

rom the simulation if their radius goes below 𝑅𝑡ℎ ≃ 0.3 nm (given by
q. (15)). As shown in Fig. 4.d, the shrinking dynamics is fast, such that
he vast majority of precipitates satisfy 𝑅 > 𝛥𝑥 during the simulations
iscussed in Section 4.
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