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Received 31 May 2007; received in revised form 18 July 2007; accepted 8 November 2007
Abstract

Molecular statics, molecular dynamics and kinetic Monte-Carlo are used to model the carbon Snoek peak in ferrite. Using an inter-
atomic EAM potential for the Fe–C system, saddle point energies for the diffusion of carbon have been evaluated under uniaxial stress by
molecular statics. These energies have been reintroduced in a kinetic Monte-Carlo scheme to predict the repartition of carbon atoms in
different octahedral sites. This repartition leads to an anelastic deformation calculated by molecular dynamics, which causes internal
friction (the Snoek peak) for cyclic stress. This approach leads to quantitative predictions of the internal friction, which are in good
agreement with experiments.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In body-centred cubic (bcc) metals, like a-Fe, interstitial
solute atoms are found in octahedral sites, which have the
characteristic to be strongly non-symmetrical, leading to
local strain distortions (cubic to tetragonal symmetry).
These distortions can produce anelastic relaxation observa-
ble by dynamical mechanical measurements. Snoek [1] first
discovered this relaxation by measuring the internal fric-
tion of an Fe–C sample as a function of temperature. He
found that the relaxation amplitude was proportional to
the carbon concentration.

This proportionality has been proved for a great amount
of interstitial atoms (see the insightful review of Weller [2])
and therefore is very useful to quantify precisely the
amount of interstitial atoms. The position of the peak is
another important information that can be deduced from
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internal friction analysis. It is related to interactions
between interstitial atoms and the iron matrix. As these
interactions contain an elastic and a chemical part, their
prediction, or modelling, is far from trivial.

The linear point defect theory [2,3] has been extensively
used to describe the Snoek relaxation. However, non-linear
effects, such as interaction of C with interstitial solute
atoms or dislocations cannot be treated properly with this
theory. Some previous studies tackled this problem either
analytically [4] with fitting parameters or numerically [5]
with empirical pairwise interatomic potentials.

In this paper, a general scheme at the atomic scale, able
to account for non-linear effects, will be presented and val-
idated on a simple Fe–C system. A molecular statics (MS)
framework based on a recently published Fe–C embedded
atom method (EAM) potential [6] is used to evaluate sad-
dle point energies as a function of external applied stress.
These saddle point energies serve as entry parameters of
a kinetic Monte-Carlo (KMC) simulation that describes
the kinetics of carbon jumps in interstitial sites. Then
molecular dynamics (MD) is used to get the anelastic
Mater. Sci. (2008), doi:10.1016/j.commatsci.2007.11.004
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Fig. 1. (a) Three energetically equivalent octahedral sites in a stress free ferritic matrix. (b) Applying uniaxial stress leads to the formation of two
energetically different octahedral sites: sites 1 (respectively 2) have their tetragonal distortion axis parallel (respectively perpendicular) to uniaxial stress
direction.

1 With tetragonal distortion axis parallel to uniaxial stress direction.
2 Formerly sites 2 and 3 of Fig. 1a, with tetragonal distortion axis

perpendicular to uniaxial stress direction.
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distortion from the carbon population distribution (that
comes out of KMC). Finally, form the applied stress and
the resulting global strain, internal friction is calculated.

Some alternative approaches combined KMC with MD
(e.g. radiation damages). In most of these works, MD
results served as entry parameters for KMC [7,8]. Recent
studies have tried to improve the coupling between the
two methods, either by performing an ‘‘on the fly” combi-
nation of KMC and MD [9], or by extracting constitutive
laws from MD calculations and incorporating them in
KMC [10]. Our original scheme could be considered as a
mixture of the two above mentioned techniques.

2. Snoek relaxation

Mechanical spectroscopy is a powerful experimental
tool for characterising the Snoek relaxation. A cyclic stress
r ¼ r0 cosðxtÞ is applied to a sample and the deformation
� ¼ �0 cosðxt þ /Þ is measured. The deformation can be
decomposed as follows:

� ¼ �00 cosðxtÞ þ �000 sinðxtÞ ð1Þ

with �00 ¼ �0 cosð/Þ being the strain component in phase
with stress (elastic deformation: r ¼ �0E;E : Young’s
modulus) and �000 ¼ �0 sinð/Þ the stain component in quad-
rature with stress.

The internal friction d is defined as the ratio of the dis-
sipated energy during one cycle (DW ) over the maximum
elastic energy (W el)

d ¼ DW
W el

¼
R 2p

x
0

rd�00

1
2
r0�

0
0

¼ 2p
�000
�00
¼ 2p tan / ð2Þ

Internal friction is often referred to as Q�1 ¼ d=ð2pÞ ¼
tan /.

In the case of carbon in bcc iron, there are three types of
octahedral sites (1, 2 and 3), which are energetically equiv-
Please cite this article in press as: S. Garruchet, M. Perez, Comput.
alent in a stress free state (Fig. 1a). Application of a uniax-
ial stress r, splits the energy levels such that one site, called
‘‘site 1”1, is different from the two others, called ‘‘site 2”2 in
the following (see Fig. 1b).

At low applied stresses (linear point defect theory), car-
bon jump frequency m does not depend on stress or site
types and follows an Arrhenius equation: m ¼ m0 exp½�
DG0=ðkT Þ�, where DG0 is the diffusion barrier of carbon
and m0 the jump attempt frequency. Within the linear point
defect theory [2], the system undergoes a relaxation with
inverse time s�1 ¼ 3m. Internal friction is then given by a
Debye equation

Q�1 ¼ Dxs

1þ ðxsÞ2
ð3Þ

where D is the relaxation strength and Q�1
Max ¼ D=2 is the

internal friction maximum value.
To avoid the former assumption of linearity and pro-

pose a more general framework for modelling the Snoek
relaxation, we need to evaluate: (i) the stress dependence
of saddle point energies; (ii) the carbon distribution in each
site type versus time; (iii) the anelastic deformation for a
given carbon distribution. Each of these steps will be
detailed in the following section.
3. Modelling internal friction: the method

3.1. Saddle point energies versus stress

To analyse the evolution of the diffusion barrier with
external stress, a conjugate gradient procedure has been
applied to a system of 2000 iron atoms and 1 carbon atom.
Mater. Sci. (2008), doi:10.1016/j.commatsci.2007.11.004
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To apply an uniaxial stress state to the system, the box
dimension in the traction axis has been adjusted, leaving
the two other dimensions stress free. The energy barrier
for C atom migration was estimated by displacing the C
atom and allowing it to relax in the plane perpendicular
to the jump direction, whilst the Fe atoms relaxed fully.

Fig. 2 shows the variation of the diffusion barrier when a
carbon atom jumps from an octahedral site of type 1 to an
octahedral site of type 2 (or 3): DG12 (and respectively from
an octahedral site of type 2 (or 3) to an octahedral site of
type 1: DG21) as a function of the applied stress. As
expected, there is an energetically favoured site depending
on the applied stress (traction or compression): site 1 is
favoured under traction and site 2 (or 3) is favoured under
compression. Indeed, the two first neighbours of site 1 are
moved aside under traction, leaving more space for the car-
bon atom.

From these results, two equations can be fitted

DG12 ¼ �b r2

2
þ arþ DG0

DG21 ¼ �b r2

2
� arþ DG0

(
ð4Þ
where a ¼ ð24:4� 0:5Þ � 10�3 eV=GPa and b ¼ ð12� 1Þ�
10�3 eV=GPa2. DG0 ¼ 0:849� 0:002 eV is the diffusion
barrier of a carbon in a stress free ferrite matrix for the
present iron–carbon potential [6]. This non-linearity is
not surprising considering (i) the non-symmetrical geome-
try of octahedral sites; (ii) the anharmonicity of the Fe–C
potential.

The justification of this simple form could be under-
stood as follows. The energy barriers from site i to site j

is given by

DGijðrÞ ¼ GspðrÞ � GiðrÞ ð5Þ
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Fig. 2. Variation of the carbon diffusion barrier to jump from an
octahedral site 1 to an octahedral site 2 (or 3), respectively from an
octahedral site 2 (or 3) to octahedral site 1 as function of the applied stress
to the system during a uniaxial stress test.

Please cite this article in press as: S. Garruchet, M. Perez, Comput.
The saddle point energy, Gsp, which corresponds to the
tetragonal site energy, is relatively insensitive to uniaxial
traction (no volume change of tetragonal site at first order),
leading to

GspðrÞ � G0
sp ð6Þ

However, due to our Fe–C potential, energies of sites 1
and 2 depend non-linearly on the uniaxial stress state

G1ðrÞ � G0
1 þ

oG1

or

����
r¼0

rþ o2G1

or2

����
r¼0

r2

2
ð7Þ

G2ðrÞ � G0
2 þ

oG2

or

����
r¼0

rþ o2G2

or2

����
r¼0

r2

2
ð8Þ

Due to the symmetry of our system, uniaxial traction
has the same effect on site 1 energy as uniaxial compression
on site 2 energy, leading to

a ¼ oG2

or

����
r¼0

¼ �oG1

or

����
r¼0

ð9Þ

b ¼ o2G1

or2

����
r¼0

¼ o2G2

or2

����
r¼0

ð10Þ

with a > 0 (geometric effect) and b > 0 (non-linearity of the
Fe–C potential) justifying then both the form of Eq. (4)
and the sign of a and b coefficients.

3.2. Kinetics of defects distribution and anelastic deformation

KMC is used to evaluate the kinetics of defects distribu-
tion. KMC is based on the evaluation of the probabilities
of any possible event that can occur at a given time [11].
The sum of these probabilities is related to the residence
time sR of a given state of the system.

Let us start with a system with a given configuration i

and an associated energy Ei. This system has Z possible
transitions from this configuration i to a neighbouring
configuration j. Each transition j involve the crossing of a
saddle point (intermediate state of higher energy Ej

sp).
The energy barrier corresponding to the jth transition is
DGij ¼ Ej

sp � Ei with associated probability

pi!j ¼ exp
DGij

kT

� �
ð11Þ

The probability that this transition occurs during time
interval dt is then

w0pi!j dt ¼ w0 exp
DGij

kT

� �
dt ¼ wk dt ð12Þ

where wk is the probability per unit time that the kth tran-
sition occurs and w0 is the attempt frequency.

The probability that no event occurs during time inter-
val dt ¼ n dt is

1�
XZ

k

wk dt

 !n

� expð�XdtÞ ð13Þ
Mater. Sci. (2008), doi:10.1016/j.commatsci.2007.11.004



Fig. 3. The selected transition is the one that intercepts the end of the
segment of length X � r2. In this example, it would be the third one.
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where X ¼
PZ

k wk. The residence time sR of the configura-
tion i is then evaluated by picking a random number r1 be-
tween 0 and 1 and applying

sR ¼ �
ln r1

X
ð14Þ

To select the actual transition that will be performed
after a time sR, a second random number r2 between 0
and 1 is used. The selected transition is the one that inter-
cepts the end of the segment of length X � r2 (see Fig. 3).

In the case of carbon in iron, each carbon atom has four
neighbouring octahedral sites. If nC is the number of car-
bon atoms in the MD simulation box, the number of pos-
sible transition is Z ¼ 4nC. Each atom of type 1 can jump in
four sites of type 2 and each atom of type 2 and can jump
in two sites of type 1 and two sites of 2 (see Fig. 1b), lead-
ing to the transition probabilities

p1!2 ¼ 4 exp
DG12

kT

� �
ð15Þ

p2!1 ¼ 2 exp
DG21

kT

� �
ð16Þ

p2!2 ¼ 2 exp
DG0

kT

� �
ð17Þ

Note that the jump attempt frequency m0 of linear point
defect theory (see Section 2) is twice the attempt frequency
w0 used in KMC. This is due to the existence of two tran-
sition paths from site i to site j (see Fig. 1b).

At each KMC step: (i) stress is calculated for time t:
r ¼ r0 cosðxtÞ; (ii) energy barriers DGijðrÞ given in the pre-
ceding section (Eq. (4)) are updated; (iii) one of the 4nC

possible transitions is chosen, giving a new carbon distribu-

tion (C1 and C2) in sites 1 or 2; (iv) residence time sR is cal-
culated and time is updated (t t þ sR); (v) anelastic

deformation �an is evaluated from MD simulations on pre-
ceding carbon distribution (C1 and C2). The five preceding
steps are repeated until a stationary state is reached (usu-
ally after a few periods)3. Finally, internal friction is calcu-
lated using Eq. (2).

MD simulations, performed on stage (v) when
C1 and C2 oscillations reach a stationary state, have been
3 Stage (v) is not necessarily performed at each KMC step. Indeed �an

should be computed rather often to accurately describe anelastic defor-
mation oscillations. However if performed at each KMC step �an

calculation would lead to intractable computing times.
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run with LAMPPS [12] keeping number of atoms, pressure
and temperature constant (NPT) within periodic boundary
conditions. MD simulations have been performed with a
few tenths of carbon atoms, on different simulation box
sizes, inversely proportional to the carbon concentration,
until the system reaches an equilibrium (around 200000
time-steps). The MD simulation box deformation along
direction 1 (�11) has then been averaged during the follow-
ing 200000 time-steps, giving thus the anelastic deforma-
tion. Note that MD simulation time (a few hundreds of
ps) is not taken into account because it is negligible com-
pared to KMC carbon diffusion time (�1s_) in the range
of temperature concerned by this study.
4. Results

In this section, calculated internal friction will be pre-
sented as a function of temperature, frequency and carbon
content. It will be compared with experimental data. In the
following, the value of the attempt frequency will be chosen
to remain in the range of those found in the literature
ðm0 ¼ 9� 1013 HzÞ and r0 ¼ 0:131 GPað�0 ¼ 0:1%Þ will be
used to be as consistent as possible with experimental con-
ditions. In the last part, we point out the effect of the diffu-
sion barrier non-linearity on the Snoek peak.
4.1. Temperature and frequency

Fig. 4 represents the variation of internal friction4 versus
temperature for frequencies of 0.5, 1 and 2 Hz. As
expected, internal friction exhibits a peak at room temper-
ature (i.e. the so called Snoek peak). Moreover, it can be
noticed that low frequencies shift the peak to lower temper-
atures (respectively high frequencies shift the peak to
higher temperatures), as observed experimentally. How-
ever, frequency has no influence on internal friction
maximum value. This can be easily established, if we super-
impose the three curves on each other by a horizontal shift
on the temperature scale, as shown in the inset of the
Fig. 4. In the following, the frequency of 1 Hz was used
as in many internal friction experiments on Fe–C system.
In Fig. 4, simulated internal friction is compared with lin-
ear point defect theory (Eq. (3) with D fitted5): both
approaches fit remarkably well, thus validating the coupled
MD/KMC approach.
4.2. Carbon content

Fig. 5 shows the Snoek peak for the five different carbon
concentrations (0.01%, 0.05%, 0.1%, 0.5% and 1% atomic).
4 Uncertainties inerrant to our approach have been estimated to be
DQ�1 ¼ 1:5 [C(% at.)]. For the sake of clarity, corresponding error bars
were reported only on Fig. 4.

5 Comparison between experimental and modelled peak amplitude is
detailed in Section 4.3.1.

Mater. Sci. (2008), doi:10.1016/j.commatsci.2007.11.004
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The internal friction peak is localised at a temperature of
314 K for all carbon concentrations.

It can be noticed that internal friction values seem to be
proportional to the carbon content, as observed experi-
mentally. Indeed, the internal friction maximum Q�1

Max is
assumed to be directly proportional to the carbon content
in solid solution [13], and follows the relation:

Q�1
Max ¼ K � ½Cð%at:Þ� ð18Þ

where K is a constant. The inset on Fig. 5 depicts the
dependence of the maximum value of the internal friction
with the carbon concentration. As experimentally, the
internal friction maximum Q�1

Max is proportional to the
carbon content with a value of the constant K ¼ 0:15 (%
at.)�1.
Please cite this article in press as: S. Garruchet, M. Perez, Comput.
4.3. Experimental versus simulated Snoek peak

Internal friction experiments are generally performed on
polycrystalline samples (torsion test), whereas our
approach considers a tensile test on a monocrystalline sam-
ple (traction axis [100]). A relationship between DE100

(relaxation strength for traction on monocrystal) and DG

(relaxation strength for torsion on polycrystal) is then
needed.

4.3.1. From simulation (traction on monocrystal) to

experiment (torsion on polycrystal)

In the frame of linear point defect theory, relaxation
strength is given, depending on solicitation type [2]

DE ¼
2

9

C0v0

kBT
k1 � k2ð Þ2EðCÞð1� 3CÞ ð19Þ

DG ¼
4

3

C0v0

kBT
k1 � k2ð Þ2GðCÞC ð20Þ

where C0 is the concentration of carbon, v0 the atomic vol-
ume, ðk1 � k2Þ the carbon induced tetragonal distortion, G
the shear modulus, E the Young modulus and C the orien-
tation parameter describing the misorientation between
mechanical solicitation and basis axis of the cubic lattice.

In our work, the orientation parameter C ¼ 0 because
the traction axis is parallel to the [100] direction. Young’s
modulus in the [100] direction corresponding to our poten-
tial is E100 ¼ 131 GPa, in agreement with experimental data
[14]. For a polycrystal, the mean value of the orientation
parameter is considered to be hCi ¼ 0:2 [15].

Correspondence between relaxations strength DE100

(traction on monocrystal) and DG (torsion on polycrystal)
is then given by the ratio of Eqs. (19) and (20)

DG

DE100

¼ 6GhCi
E100

� 0:74 ð21Þ

To be compared to experimental values resulting from
torsion on polycrystals, our results should then be multi-
plied by 0.74.

4.3.2. Results

Coupled MD/KMC simulation of a ferrite matrix with
20 at. ppm (particles per million) carbon in solid solution
was performed to compare to Weller’s experimental results
[15].

It can be observed in Fig. 6 that both experiment and
modelling have the peak position at the same temperature:
314 K. After subtraction of the experimental background
(defects of the ferrite matrix, grain boundary, . . .), the
agreement is quite satisfactory in terms of shape and peak
amplitude.

Moreover, the same agreement is observed for the con-
stant K linking the carbon concentration to the internal
friction maximum value Q�1

Max. Our modified value
K ¼ 0:15� 0:74 ¼ 0:11 is relatively close to the experimen-
tal value of Saitoh et al. [16] K ¼ 0:14 (% at.)�1.
Mater. Sci. (2008), doi:10.1016/j.commatsci.2007.11.004
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It is clear that our results underestimate internal friction
by � 25%. Nevertheless, this difference is not due to our
coupled MD/KMC approach, but is certainly the conse-
quence of our Fe–C potential, which underestimates the
local elastic distortion ðk1 � k2Þ. Indeed in a previous paper
[6], we showed that this potential underestimates the expan-
sion of the carbon induced tetragonal lattice distortion.
4.4. Non-linearity of diffusion barrier

To underline the influence of non-linearity on the Snoek
peak shape, a coupled MD/KMC simulation with a high
value of r0 (2.6 GPa, �0 � 2%) using non-linear stress
0
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Fig. 7. Modelled Snoek peak with non-linear stress dependence on
diffusion barrier (diamonds) for a value of r0 ¼ 2:6 GPa ð�0 � 2%Þ and
linear point defect theory from Eq. (3) (line).
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dependence on diffusion barrier from Eq. (4), has been
compared with linear point defect theory (Eq. (3)).

It could be noticed on Fig. 7 that the non-linearity of the
diffusion barrier have a strong influence on the peak shape
and amplitude for large stresses. Moreover, in the prospec-
tive case of carbon M substitutional atom interactions, or
carbon M dislocation interactions (purpose of a forthcom-
ing paper), where local stresses (or stains) are important,
the influence of non-linearity is far from being negligible.
The use of our coupled MD/KMC approach, validated
in the linear case, is then fully justified.

5. Conclusion

This work proves that coupling molecular statics, molec-
ular dynamics and kinetic Monte-Carlo is a useful method
to model the Snoek peak. MS was used to predict the stress
dependence of energy barriers. KMC was used to predict
the evolution of carbon distribution in sites 1 or 2 for a cyc-
lic applied stress. Then, MD was performed to evaluate the
anelastic deformation for a given carbon distribution in
sites 1 or 2.

Results obtained in terms of Snoek peak: (i) shape; (ii)
position versus temperature and frequency; (iii) amplitude
versus carbon content, are in good agreement with various
data taken from the literature.

Once successfully compared with existing models and
experiments in the linear domain, this technique could be
straightforwardly applied to non-linear problems, such as
interactions between substitutional elements (Mn, Cr,
V,. . .) or dislocations and interstitial atoms (C, N). These
interactions are indeed at the base of: (i) interstitial free
(IF) steels specific properties; (ii) the understanding of pre-
cipitation first stages in steels. Although such interactions
are well documented experimentally [16,13,17,18], they
are not clearly understood. Coupling MD and KMC will
be all the more powerful as a large effort is currently made
to develop new interatomic potentials for metals and alloys
[19–23].
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