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Abstract
While surfaces are known to have a limited impact on the mechanical proper-
ties of crystalline materials at the macroscopic scale, they play a key role at
small-scale behaving alternatively as sources or sinks of various plastic deform-
ation processes. In this study, we present a new tool called El-Numodis that
relies on the superposition method to couple the discrete dislocation dynam-
ics code Numodis to Elmer, an open-source finite-element-modeling tool.
After few years of development, El-Numodis allows now for the simulation
of small-scale object deformation and mechanical properties based on a large
set of surface-related processes including stress-free boundaries, mirrored dis-
locations and a Monte-Carlo based dislocation nucleation mechanism. Here
we present the main features of the code as well as numerical test-cases and
benchmarks going from classical boundary value problems to tensile tests on
model thin film.
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1. General introduction

Modeling and predicting the mechanical properties of materials is at the roots of modern
materials engineering. In this context, the development of multi-scale modeling approaches
has recently known an unprecedented growth including specific improvements at the meso-
scale i.e. at the grain-scale. Among others, techniques such as the discrete dislocation dynamics
(DDD) [1–3], phase field modeling [4, 5] or large-scale molecular dynamics (MD) simulations
[6, 7] have allowed a better understanding of elementary deformation processes while open-
ing alternative routes to the classical reverse engineering process [8]. Among others, the DDD
method benefits of a particular status in the materials multi-scale modeling framework. Indeed,
as focusing on the collective behavior of dislocations (linear defects responsible for the irre-
versible deformation of crystalline materials), DDD is one of the very first method able to
predict dislocation microstructure evolution at the grain-scale while providing quantitative
inputs to model the mechanical response of crystalline materials at larger-scales as e.g. in
crystal plasticity models [9–12]. Nevertheless, the downscaling generated by the recent accel-
eration of nanotechnology developments has reshuffled the cards of the multi-scale modeling
framework.

Indeed, nanotech is now an important segment of the modern material industry. The wide
range of applications of nanodevices is mainly due to the advantages brought by the radical
change of their properties (mechanical, surface, optical, chemical, etc) induced by their size,
compared to bulk materials. As examples, nanowires are employed for digital data storage
due to their superparamagnetic capability that relies on a very fast response to external fields
with almost zero remanence [13, 14], nanoparticles are also currently used to improve the
performance of lubricants [15, 16] or as compounds to build implants due to their high-strength
and wear resistance [17]. Overall, nanocrystals and their outstanding mechanical properties
(smaller is stronger) are now widely used to improve bulk materials [18, 19] and their strength
vs. size dependence mostly arises from the increase of the surface over volume ratio when
scaling down the sample size [20, 21].

While the flow of bulk materials is known to be governed by a dislocation multiplication
process from an existing defective microstructure, the plastic deformation of nano-objects is
controlled by a surface dislocation nucleation (SDN) mechanism that requires a much lar-
ger stress than in the classical dislocation multiplication case (stress increased by a factor of
10 to 1000) [22–25]. In fact, nanocrystals are known to be dislocation-scarce (or free) due
to both the soft fabrication routes from which they are derived (e.g. crystal growth, dewet-
ting, lithography) as well as to surface-induced image forces [26, 27] that pump the dis-
location density out, this latter being intrinsically concomitant to the aforementioned SDN
process.

Several experimental and numerical methods currently exist to try to understand the mech-
anical behavior of nano-objects. For example, nanocompression in the scanning electron
microscope or transmission electron microscope (TEM) are the most used experimental tech-
niques in the field [28–30]. Experiments are reported for sample sizes ranging from several
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micrometers down to few tens nanometers as well as for low deformation rate (10−4 to∼1 s−1).
While the use of TEM allows for microstructure, defect and surface characterizations at the
nanoscale, it is still a complex and expensive method and several issues including sample
misalignment, contamination or oxidation are commonly reported [31–33]. Thus, computa-
tional methods are often used to support the interpretation of nanomechanics experiments. On
one hand, MD is the most used numerical technique to simulate the mechanical properties of
nano-objects as relying on the description of atomic-scale processes [21, 34]. It is based on
interatomic potentials used to compute atomic forces and integrate the dynamics of molecular
systems e.g. in a sample under load when applied to the field of nanomechanics. However,
MD sample size is usually limited to few tens of nanometers while nano-objects can be of few
hundreds and, furthermore, MD is performed at particularly high strain-rate (∼108 s−1) due
to prohibitive computational costs.

On the other hand, while DDD allows for larger sample size and strain rates both being
closer to experimental conditions, it also has some drawbacks. Indeed, DDD allows to model
dislocations on the basis of constitutive equations rather than atomic interactions what makes
the model less expensive in terms of CPU costs but has the disadvantage of being less accur-
ate. Furthermore, DDD codes are generally developed for bulk applications and often miss
nanoscale features. The major lack relies on the elastic theory the DDD is based on that
usually assumes an infinite continuum. This peculiarity raises the issue of finite boundary
conditions (BCs) as DDD was originally developed to tackle configurations close to bulk con-
ditions i.e. using periodic boundary conditions (PBCs) or free-BCs, without explicitly con-
sidering realistic surfaces. In addition, former DDD codes (e.g. microMegas [35, 36], Paradis
[37], Tridis [2, 38]) have not been originally developed to describe dislocation nucleation pro-
cesses. While this latter is not crucial to simulate bulk mechanics, it is imperative to model
nanoscale mechanical properties due to the aforementioned SDN process. In this context, the
development of quantitative numerical tools to investigate the mechanical properties of small-
scale objects including the effect of surfaces, sample size, strain rate as well as the ability to
account for most of nanoscale elementary deformation processes emerges as a crucial step up
to improve our understanding of micro and nanomechanics [33].

Boundary value problems (BVPs) related to surfaces or interfaces can be addressed coup-
ling the DDD with the finite-element method (FEM) using various kinds of approaches such
as the superposition method (SPM) that relies on a linear stress correction originally proposed
by Van der Giessen and Needleman [39], the discrete continuous method (DCM) proposed by
Devincre and collaborators [40–42] based on the eigenstrain formalism ofMura [43] or the fast
Fourier transform (FFT) dislocation approach which is increasingly used by the community
[44, 45]. As an example of application, a DCM-FFT approach was recently used by Kohnert
and colleagues to quantify the effect of surfaces and TEM lamella thinning on the dislocation
density [46].

Here we present our approach called El-Numodis which is based on the SPM and integrate
specific features adapted to nanomechanical simulations. El-Numodis relies on the coupling of
the DDD code Numodis [47, 48] and the open-source FEM software Elmer [49]. It benefits of
a particularly accurate and parallel nodal DDD framework that integrates top of the art features
such as various implementations of the elastic theory, the singular and non-singular theories
for dislocations [26, 50] as well as additional ingredients to better model deformation tests
at small-scales accounting for surface effects as e.g. the Weygand’s approach for dislocation
vs. surface interactions [27] and a Monte-Carlo routine for homogeneous and heterogeneous
dislocation nucleation, as inferred from the harmonic transition state theory (TST) [51].
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In the following, we start with a brief reminder about the DDD and FEM techniques in
the context of the parent codes Numodis and Elmer, then, the main aspects of the coupling
are introduced (SPM basics, coupling and interfacing procedures, dislocation nucleation and
interaction with surfaces, etc). Finally, an extended last section composed of various validation
tests and applications complete the study.

2. Numerical methods

2.1. Basics on DDD and FEM: methodologies and parent codes

The DDD is a mesoscopic approach developed to investigate the collective behavior of dis-
locations. This method was originally developed in the late 80’ to study the evolution of a
dislocation population under load in metals [52]. Since, it was further used to investigate vari-
ous issues including strain hardening (see e.g. [3, 53]), irradiation defects [48, 54, 55], fatigue
[56, 57] or nanoindentation [58] in metals. Few applications in oxides and minerals can also
be found [12, 59–61]. General details about the DDD method can be found in [36, 62, 63].

Numodis is a versatile DDD code developed by the French Atomic Energy Center (CEA)
used here in the DDD/FEM coupling framework of El-Numodis. Up to now, Numodis has
shown to be particularly suited to investigate the influence of radiation-induced defects on
the plastic behavior of metals such as iron [48, 64] or zirconium alloys [47] with one-to-one
cross-validations of the DDD outcomes against MD and experiments.

From a technical point of view, Numodis is a C++ nodal code in which dislocations are
described by nodes interconnected into segments characterized by their Burgers vector and
glide plane. It can be used either serial or parallel using the openMP protocol. In Numodis, a
remeshing algorithm ensures that each segment length respects an admissible size range chosen
in accordance with the characteristic size of the investigated phenomenon. The force acting
on the nodes is computed within the singular [26] or non-singular [65] dislocation theoretical
framework using the analytical formulation derived by Arsenlis et al [37]. Additional disloca-
tion core forces can be accounted using core energy terms [66–68]. The velocity of each node
is computed using a classical variational approach [27, 65] assuming an overdamped motion
and various kind of dedicated mobility laws including e.g. viscous or thermally-activated glide
assigned on each segment character and slip system. Dislocation contact reactions (junction,
annihilation, crossed-states, etc) are computed using the elastic theory allowing to model
the dislocation microstructure evolution and strain hardening. The methodology used in El-
Numodis is inspired from the seminal work of Bulatov et al [37, 69] and can be resumed as
follow. A collision detection algorithm is used at each timestep to predict incoming dislocation
contact reactions with other dislocations or microstructural defects such as grain boundaries
or precipitates. When a collision is detected, a new node is generated at the contact point and
is kept fixed during the current DDD time step allowing for the rest of the dislocation micro-
structure to relax. If the collision is confirmed, the node evolves at step n+ 1 depending on the
situation while minimizing the energy using a split node algorithm. For example, for a contact
between two dislocations, the node can split into two subsequent nodes forming a junction
segment. At each time step, the code checks whether or not a node has to be split, a splittable
node being defined as connected at least to three other nodes and must not be arbitrary pinned
(e.g. Frank–Read source).

Used in the El-Numodis context as an elastic solver, Elmer is a multiphysical FEM code
written in modern Fortran that includes a large set of continuum-based physical models [49].
Up to now, Elmer was used in various fields of application to model e.g. crystal growth [70],
blood flow in elastic arteries [71], computational glaciology [72] or electrical machines [73].
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Figure 1. The superposition method. The stress field σ inside a finite-size volume con-
taining dislocations (right-hand side) is obtained adding the dislocation self-stress σ̃ as
computed by the DDD to the elastic stress σ̂ as inferred from a FEM boundary corrected
problem (left-hand side).

Elmer uses high-level abstraction when treating individual equations for solving multiphys-
ical problems and benefits from a modular structure and generic strategies that are useful when
coupling it with other codes as e.g. with OpenFOAM [74]. In the following, Elmer is coupled
to Numodis using the SPM method [39, 75]. The Elmer physical model used for this coupling
is the elasticity equation that can be solved using various types of 2D (triangular, quadrilat-
eral) and 3D (tetrahedron, hexahedron, prism or wedge) elements. Finally, the linear system
is solved using number of different direct (Umfpack, MUMPS and Pardiso packages) or iter-
ative (conjugate gradient, basic preconditioning, Krylov subspace methods, etc) techniques.
Also, Elmer is interfaced with Hypre that provides an additional set of iterative solvers and
preconditioners [76]. Finally, efficient octree-based interpolation methods that can be per-
formed on nodes or on integration points are available for mapping results between computa-
tional meshes.

2.2. The SPM and El-Numodis

2.2.1. Introduction to the SPM. The SPMmethod was first introduced by Needleman et al to
solve BVPs [39]. It is based on the correction of the dislocation self-stress σ̃ and displacement
fields ũ originally computed by a DDD code (assuming an infinite medium) at physical bound-
aries S using a FEM elastic solver. Assuming a finite-size volume, the SPM aims at imposing
an applied force or displacement (Fapp and uapp, respectively) via the BCs that is corrected
by an homologous contribution (σ̃ or ũ) induced by a dislocation population as computed by
the DDD using an infinite medium hypothesis (see figure 1). For that purpose, the dislocation
stress field computed at the boundary σ̃(S) is converted into forces F̃(S) using an appropriate
conversion scheme when accounting for Neumann applied force BCs whereas applied dis-
placement (Dirichlet) BCs ũ(S) are computed using the Barnett approach [77]. After solving
the BVP, the field corrections (σ̂ or û) is added to the original internal fields (σ̃ or ũ) computed
by the DDD what leads to the total stress σ or displacement fields u (equation (1)). The FEM
correction is computed at the dislocation Gauss points using a classical interpolation method
and is further added to the dislocation stress or displacement field contribution. Thus, SPM
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allows for the mesoscale modeling of a finite-size domain including surfaces and interfaces
(in the contrary to the self-standing DDD). This method that allows for arbitrary BCs was
already used for various modeling applications such as nanoindendation [2, 78], thin film [79]
or micropillar compression [80] simulations,

σ = σ̃+ σ̂

u= ũ+ û. (1)

2.3. El-Numodis operation

In the coupling approach, the FEM code Elmer drives the simulation and refers to the DDD as
an external library. Number and format conversion drivers have been implemented for direct
data transfer between the two codes while Elmer external solvers were upgraded here to man-
age the newly coupled BCs. In a nutshell, the coupling consists in three external routines and
several Numodis functions being called as shown in figure 2. The El-Numodis workflow can
be described as follows:

(i) Loading deformation conditions. El-Numodis requires a 3D geometrical mesh as well
as a parameter file that are loaded at first. Among others, the parameters file contains
the definition of the faces where the BCs (Dirichlet or Neumann) are applied, the total
number of time steps, the output saving frequency, material elastic properties as well as
the elastic solver parameters. At the end of this first step, Numodis is called using a first
driver referred as El-Numodis export bnodes.

(ii) Calculation of σ̃(S) and ũ(S). Specific DDD inputs as e.g. the dislocation density dis-
tribution, are loaded by Numodis. Elmer associates parts of or all the surface nodes to
specific BCs i.e. Neumann (including traction-free nodes) or Dirichlet BCs. Then, the
DDD computes the displacement and stress fields associated with the current dislocation
density σ̃(S) and ũ(S) at the specified BC nodes.

(iii) Fields regularization. A second driver called El-Numodis import converts σ̃(S) into F̃(S)
at Neumann boundary nodes and F̂(S)= Fapp− F̃(S) as well as û(S)= uapp− ũ(S) are
computed. Then, the assembly is performed accounting for a feedback loop to either adapt
the applied stress or displacement. Finally, the linear elastic solver of Elmer computes σ̂
everywhere inside the simulation volume.

(iv) Fields superposition. Finally, the last driver El-Numodis export stress is called. It first lists
dislocation Gauss points and then interpolates σ̂. The stress superposition as described
by equation (1) is performed leading to the effective stress state σ. Then, a new DDD
step is performed including force computation, possible nucleation event or dislocation
displacement. The whole process is repeated up to the total amount of simulation time
steps.

2.4. Field conversion and interpolation

By definition, stress and force are connected by a geometrical area. In FEM, the conversion
from stress to force is performed retrieving stress values at the Gauss points of mesh elements
and converting them into nodal values using the pseudo-inverse of a shape function associated
to each mesh type. Figure 3(a) shows a typical example about how this is implemented in El-
Numodis, associated here to a regular mesh of eight-nodes hexahedron elements for the sake
of simplicity. As shown in figure 3(a), σ̃(S) is computed at the mesh nodes and the conversion
from σ̃(S) to F̃(S) is done using a weighted area of normal vector n associated to each node
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Figure 2. El-Numodis workflow. The FEM code Elmer masters the coupling using the
DDD Numodis code as a library. Both contributions are illustrated in green and blue,
respectively. The three main drivers of El-Numodis i.e. El-Numodis export Bnodes, El-
Numodis import and El-Numodis export stress are illustrated using red blocks. (i), (ii),
(iii) and (iv) refer to the main operations as described in the text.

using equation (2). The weighted area depends on the element shape and localization. Here,
internal surface nodes are characterized by A = 1 whereas corners and external edge nodes
have associated area of A/4 and A/2, respectively,

F̃(S)= Aσ̃(S)n. (2)

The stress at the dislocation Gauss points σ̂gp is derived from the FEM solution σ̂ origin-
ally computed at the mesh nodes. To interpolate and retrieve the solution at the dislocation
Gauss point, it is necessary to (i) identify the element and the k nodes enclosing the respective
dislocation Gauss point, (ii) transform the global coordinates (x,y,z) of the element nodes into
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Figure 3. El-Numodis interpolation scheme using shape functions and fields conver-
sion. (a) Representation of a surface mesh where stresses are converted into forces at
the element nodes. Nodes and surface colors refer to respective types (green = corner,
blue= side edge and red= internal). (b) The global coordinates (x, y, z) of each node is
transformed into reference coordinate (ξ, η, ζ) with the new axes located at the center
of the hexahedron element.

a reference frame (ξ,η,ζ) (figure 3(b)) and (iii) apply the shape function Nk. In the square mesh
case depicted in figure 3(a), Nk and σ̂gp are provided by,

Nk =
1
8
(1+ ξgpξk)(1+ ηgpηk)(1+ ζgpζk) (3)

σ̂gp =
8∑

k=1

Nkσ̂k (4)

where k refers to nodes index. This method is commonly used in El-Numodis that benefits of
various additional interpolation schemes (via Elmer) that could be adapted to the calculation
of σ̂gp. See e.g. [81] for more details on field conversion and interpolation.

2.5. Dislocation and surfaces

El-Numodis is designed to model dislocations interacting with surfaces (optionally) using the
mirror dislocation concept [26, 27] to assist the FEM in field corrections. Indeed, when a dislo-
cation approaches a surface, the local stress and displacement fields can be obtained adding the
contribution of an out-of-the-boxmirror dislocation to the original dislocation fields. While the
field calculation will be discussed later, the topological aspects of the mirroring process in El-
Numodis can be described as follow. First, following the seminal work of Weygand et al [27],
a dislocation close to a sample surface by a cutoff distance r imc is automatically replicated on
the other side of the surface using planar symmetry as shown in figure 4. The resulting mirror
dislocation is characterized by a line with symmetric orientation but an opposite Burgers vector
direction. While the mirror dislocation stress and displacement fields are accounted within the
simulation cell in order to reduce image contributions, the image dislocation does not produce
any plastic shear. If the dislocation is about to contact with the surface, the Numodis collision
detection algorithm is used to identify dislocation segments about to react with their mirrored
counterpart, both emerging at the surface. In this case, the dislocation contact reaction leads
to the annihilation of both dislocations. Finally, the dislocation annihilated portion at the sur-
face is replaced by a ledge made of surface nodes (figure 4). The surface nodes have the same
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Figure 4. Dislocation interacting with surfaces in El-Numodis. (a) A dislocation close
to a surface by a distance rimc is mirrored using planar symmetry, (b) bulk and mirror
dislocations react at the surface creating a surface ledge. Dislocation and ledge nodes
are colored according to their degree of freedom number (DOF). NA = not accounted.

mobility as the bulk ones but are constrained to move only on the sample surface (with the
possibility to pass from one surface to an other). Also, ledges benefit from the same properties
as dislocations i.e. they can superimpose or annihilate when several dislocations escape from
the same surface but do not produce any stress or displacement field inside the sample.

2.6. Dislocation nucleation

Dislocation nucleation was originally introduced within DDD simulations by Fivel et al who
used a criterion on the macroscopic stress to model the nucleation of prismatic loops during
nanoindentation [82].More recently, Roy andMordehai investigated homogeneous dislocation
nucleation in nanoparticles nucleating octagonal loops with characteristic size (imposed by
the user) in high-stress regions further testing their expansion by a strict calculation of the
Peach–Koehler force between two consecutive DDD time steps [83]. This kind of approach
was consecutively extended or adapted by several groups [57, 63, 83]. At the atomic scale,
SDN has shown to be a stochastic process that depends on both the local shear stress and
temperature [51, 84]. This kind of mechanism can be rationalized using the TST that connects
the phenomenon frequency of occurrence to the local thermomechanical conditions through
an activation energy, as it has been done e.g. by Zhu et al for SDN in metal nano-objects [51].
Recently the approach of Zhu was extended to investigate the influence of the local atomic
environment on the SDN process accounting for the sharpness of surface corners and edges
[85, 86]. To provide a more realistic description of what is commonly done at the mesoscale,
our approach benefits of the recent theoretical progresses made on the dislocation nucleation
process. Indeed, the code uses a combination of dislocation harmonic TST and kinetic Monte-
Carlo (KMC) to identify the favorable homogeneous or heterogeneous dislocation nucleation
sites using meshed activation data and a probabilistic approach. As suggested by the harmonic
TST, the dislocation nucleation rate at finite temperature and site i is described by,

νi = ν0,i exp
(
−∆Gi(σi,T)

kBT

)
(5)

where ν0,i is the local attempt frequency, ∆Gi is the Gibbs free energy of the dislocation nuc-
leation process at site i, σi is the local stress and kBT is the Boltzmann factor.

Thus, the probability for a dislocation to nucleate at site i during time δt in El-Numodis is
computed as,

δNi = νi.δt (6)
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with

δt=
1
N∑
i=1

νi

(7)

with N the total number of nucleation sites.
The frequency nKMC at which the KMC algorithm is called is defined by nKMC = δtDDD/δt

per DDD step, where δtDDD is the DDD timestep. nKMC is adapted on-the-fly during the simu-
lation based on possible ν i variations induced by local stress changes. Dislocation nucleation
activation energy ∆Gi and other characteristic parameters (critical nucleation radius and slip
systems) can be set as non-local inputs or using tabulated data on a 2D or 3D grid to account for
the site-dependence of the nucleation process. Corresponding dislocations are then generated
into the simulation box as circular glissile loop (homogeneous nucleation) or truncated half
or quarter loops (heterogenous nucleation) depending on the nucleation site location. Finally,
El-Numodis is able to interpolate multiple stress or strain-dependent ∆Gi databases to model
the dislocation nucleation sensitivity to the mechanical history of the virtual sample.

While a comprehensive study of the SDN process in ceramic nanoparticles using
atomistically-informed El-Numodis will be the main focus of a forthcoming study, a simplified
application of the dislocation nucleation process is presented in figure 5. In this example, we
use a cubic-shaped copper single crystal of 500× 500× 500 nm3 size under constant load.
SDN in the 1

2 〈110〉{111} slip systems at three hypothetical nucleation sites is considered
i.e. two top corners c1 and c2 and the middle of a single lateral surface labelled s. As in the work
of Zhu et al [51], we use the approximation of an homogeneous surface disordering temper-
ature∆Si =∆Hi/Tm,i, where∆Si is the activation entropy at site i,∆Hi is the 0 K nucleation
activation enthalpy and Tm,i is the local surface disordering temperature (ν0,i = 3.14 1011 s−1

and Tm,i = 700 K whatever i). Corner and mid-surface activation enthalpies are set to ∆Hc1
= ∆Hc2 = 0.2 eV and ∆Hs = 0.5 eV respectively, assuming SDN to be more efficient from
corners than from mid-surface. A high-enough constant load is considered (σzz = 1 GPa) to
guarantee dislocation nucleation and glide. For a sake of simplicity, the per-site activation
nucleation energy is temporarily increased after each nucleation event to mimic the effect of
internal stress relaxation that prevents overly correlated nucleation events.

Simulation performed at T = 250 and 650 K are described figure 5. El-Numodis promotes
SDN originating only from c1 and c2 at T = 250 K (figure 5(a)) while nucleation events incom-
ing from the three sites are observed at larger temperature (figure 5(b)). This result is mainly
explained by the site-dependence of the nucleation probability that is influenced by the tem-
perature range as expected by the harmonic TST. Here, the probability to nucleate from a
corner Pc = νc/

∑
i νi ∼ 0.5 at T = 250 K while its mid-surface counterpart is close to zero

(Ps = 6.47 10−5) what justifies the lack of nucleation event from site s at low temperature.
On the other hand, Ps increases up to∼0.25 when the temperature is increased up to 650 K as
shown figure 5(c) and nucleation from site s becomes more favorable.

2.7. Loading and feedback loops

El-Numodis handles displacement- and force-controlled BCs (Dirichlet and Neumann BCs,
respectively) that can be set at each surface of the virtual sample allowing for constant strain
rate or creep simulations. During constant strain rate simulation, a feedback control acting on

10



Modelling Simul. Mater. Sci. Eng. 31 (2023) 055003 J A Gonzalez Joa et al

Figure 5. Dislocation nucleation at the surfaces of a cuboïdal Cu sample under constant
load (σzz = 1 GPa) at (a) T = 250 K and (b) T = 650 K. (c) Nucleation probability
Pi = ν i/

∑
i νi at corners c1 and c2 and mid-surface s computed at T = 250 and 650 K.

stress is performed as described in equation (8) using Neumann BCs. On the other hand, the
sole SPM method is used during creep simulations.

σ(S, t)=
1
Σ
(ε̇.t− εp(t)) (8)

whereσ(S, t) is the applied stress tensor at the surface, t is the elapsed time, ε̇ is the total strain
rate tensor and εp is the plastic strain tensor computed using the area swept by all moving
dislocations. Σ is the corresponding compliance tensor.
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Figure 6. Comparison between El-Numodis and analytical formulations of edge and
screw dislocation stress fields in the framework of the non-singular theory of Cai [50].

3. Validation and applications

3.1. Dislocation stress field

El-Numodis benefits of both the singular and non-singular formulations for dislocation stress
field (equations are provided as Supplementary Information). Figure 6 shows a comparison
between El-Numodis DDD and the analytical formulation of the stress field using the Cai’s
non-singular theory [50]. From a technical point of view, a straight (edge or screw) dislocation
is modeled assuming an infinite continuum using a simulation cell of size 1×1×1 µm3. The
dislocation line is oriented along z = [001] and the stress field is illustrated in the (x,y) plan
at z = 0.5 µm. Copper lattice parameter (a0 = 3.61 Å) and isotropic elasticity (λ = 77.3 GPa,
µ = 42.0 GPa, ν = 0.324) are used for the example. Overall, results show a good agreement
between analytical and El-Numodis solutions. One could notice that changing the BCs from
periodic to fixed-BCs as well as short variations of cell dimensions along x and y do not sig-
nificantly impact the results for the investigated size range.

3.2. Edge dislocation and free surface

Here we test El-Numodis reliability in the context of the stress-free BC problem by investig-
ating how the stress field of an edge dislocation is modified in the vicinity of a free surface, as
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Figure 7. Edge dislocation and free surface: stress-field prediction comparison between
El-Numodis simulation (Sim) and Hirth and Lothe (H&L) theoretical model. (a) Sim-
ulation setup, (b) dislocation self-stress σ̃ and total stress σ variations along y for a
30×60×30 elements mesh with special refine in the vicinity of the dislocation (Gmsh
bump = −4.9 and progression = 1.3). Data are plotted along a virtual line crossing the
free surface.

described in figure 7(a). In their seminal work, Hirth and Lothe proposed an analytical solu-
tion to this problem that relies on the concept of image dislocation [26]. Indeed, the authors
demonstrate that most of the stress components induced by an infinite edge dislocation can
be cancelled at a surface by adding a so-called image dislocation located on the other side of
the surface. The image dislocation is characterized by (i) the same line direction and infinite
length, (ii) an opposite Burgers vectors -b and (iii) the same dislocation-to-surface distance
l than the original dislocation. In addition, they use an Airy stress σ̂Airy superimposed to the
self σ̃ and image dislocation σ̂im stress-fields to ensure the complete vanishing of all the stress
components at the free surface (i.e. for x = l), without modifying the long-range stress distri-
bution within the sample,

σ̃ij+ σ̂im
ij + σ̂Airy

ij = 0, for x= l (9)

with σ̂im
ij the stress components of the image dislocation.

Within the Hirth and Lothe 2D formulation, the Airy stress components that verify the
stress-free conditions of the x-oriented surface are given by,

σAiry
xx =− 2µblxy

π(1− ν)r6
[3(l− x)2 − y2] (10)

σAiry
xy =− µbl

π(1− ν)r6
[(l− x)4 + 2x(l− x)3 + 6xy2(l− x)− y4] (11)

where r= (l2 + y2)1/2

The Hirth and Lothe model presented in equation (9) relies on a stress summation very
close the one used in the SPM. Thus, one way to test El-Numodis implementation is to verify
that the FEM stress correction computed by the code correctly reproduces the Hirth and Lothe
theoretical predictions of Airy and image stresses i.e. σ̂ = σ̂im+ σ̂Airy.
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To test this hypothesis, we design 1×2×1 µm3 simulation cells including a finite-length
edge dislocation (line along z, Burgers vector along x) located at a distances l = 0.1 µm from
a surface located at x = 0. Simulation volumes are meshed using 8-nodes hexahedron ele-
ments. Various geometries are tested including elements distributions from 30× 30× 30 up
to 120× 120× 120. Figure 7(a) shows a 30× 60× 30 volume with mesh refinement near the
dislocation performed using Gmsh (bump = −4.9 and progression = 1.3) [87]. As in the pre-
vious test-case, copper lattice and elastic properties are used. In the simulation, traction-free
BC is applied to the x free-surface while zero fixed displacement is used on the opposite side
(other surfaces are not considered). The total stressσ and the dislocation self-stress σ̃ obtained
are presented in figure 7(b) as plotted along a vertical line passing along the free-surface. Res-
ults confirm El-Numodis ability to reproduce theoretical σ̃, as already shown in figure 6. In
addition, the plot of σ allows for a direct comparison between the FEM correction σ̂ and
the Hirth and Lothe model σ̂im+σ̂Airy. The total stress components σxx and σxy show a sig-
nificant decrease at the surface (originally equal to the self-stress) what confirms the correct
implementation of the superposition algorithm within El-Numodis. This result applies almost
everywhere except close to y = 0, where spurious stresses are observed. These discrepancies
are attributed to the mesh refinement in this region (where large stress gradients are shown)
as well as to the intrinsic difference between the 2D Hirth and Lothe model and the 3D finite-
size simulation. One can notice that similar stress singularities at free-surface were already
observed in simulations using the SPM [27] or the DCM approach [42, 88].

Still for this test-case, figure 8 illustrates the influence of the mirror dislocation method on
El-Numodis stress field correction. Results show a qualitative agreement between simulated σ̂
(or σ̂-σ̂im, depending if the mirror image method is turned off or on) and the σ̂Airy of the Hirth
and Lothe model. Overall, using the mirror image method with FEM to compute the image
stress improves the results allowing for less refined meshes. However, such an improvement
has limitations as emphasized by the y= 0 region where data for 60 and 120 elements simula-
tions saturate. Thus, the residual stress in the y= 0 region also observed figure 7(b) is neither
significantly sensitive to simulation cell size variations or nor to the mesh refinement.

3.3. Square dislocation loop and free surface

In this section, we use El-Numodis to solve the stress-free BC problem in the case of a disloca-
tion square loop located in the vicinity of a free surface. Curved dislocation stress field can be
computed using linear elasticity and surface integration built out of the dislocation curvature
[75, 89, 90],

σpq(x ′) =−
ˆ
bsCsrklCpqmj

∂

∂x ′j
Gmk,j(x,x ′)dSr (12)

where C is the elastic stiffness and G is the Green tensor associated to a particular material.
In an infinite medium, equation (12) can be reduced into a simple integral computed along

the dislocation line using the Stokes theorem. Gosling and Willis expanded this approach to a
finite-size domain using equation (13) where S∞ and Ŝ are kernels associated to infinite and
finite-size media respectively [90]. The integral of Ŝ directly leads to the image stress σ̂; It
will be referred as the Gosling–Willis solution in the following (more details on this approach
can be found e.g. in [75]).

σpq(x ′) =−
˛
C
bs[S∞pqrs(x− x ′)+ Ŝpqrs(x,x ′)]dx (13)
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Figure 8. El-Numodis σ̂xy (or σ̂xy-σ̂im
xy when accounting the mirroring dislocation

method) correction as function of mesh refinement. Simulations are performed for mesh
discretization of 30 (dashed curves), 60 (dotted curves) and 120 (full curves) eight-nodes
hexahedron elements in the three directions of space, using the Weygand’s mirror dis-
location method (W) or not. Ref curves rely on the aforementioned 30× 60× 30 with
particular mesh refinement near the dislocation using Gmsh (bump=−4.9 and progres-
sion = 1.3). Results are compared to the σ̂Airy

xy of the Hirth and Lothe model (H&L, red
curve). Data are plotted along a vertical line passing by the middle of the x-surface as
shown in figure 7(a).

The El-Numodis simulation setup used to model the square loop and surface interactions
is presented figure 9(a). A copper 〈100〉-oriented simulation cell with dimensions of 5× 5×
2.5µm3 is meshedwith eight-nodes hexahedron elements further refined near the [001] bottom
free surface. A 1

2 [1̄01](111) square dislocation loop axis-aligned with z and with edge lengths
of about 0.5 µm is introduced at 0.37 µm of the bottom-z surface at which stress-free BCs
are applied. As in the previous case, zero displacement fixed BCs are used for the opposite
z surface while remaining surfaces are not considered as boundaries in the simulation. The
mirroring dislocation method is off here.

Results are presented in figures 9(b) and 10. On one hand, figure 9(b) shows the variations
of the FEM stress correction σ̂ as plotted along the z-axis starting from the free surface up
to 2 µm and passing trough the center of the dislocation loop. Here the results illustrate that
El-Numodis is particularly suited to reproduce the Gosling–Willis theoretical solution. On the
other hand, σ̃, σ̂ and σ̃+σ̂ stress maps plotted at the bottom-z surface are shown in figure 10.
El-Numodis allows for the decrease of the various stress components by more than a factor 5
with only fewMPa leftover at the surface. This test further confirms the ability of El-Numodis
to solve stress-free BVPs.
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Figure 9. Dislocation square loop in the vicinity of a free surface: image stress field
comparison between El-Numodis simulation (Sim) and the Gosling–Willis (GW) the-
oretical model (a) simulation setup, (b) image stress components σ̂ij as measured along
a vertical line passing by the middle of the dislocation square loop. El-Numodis results
(dots) are compared to the Gosling–Willis model (curves).

3.4. Example of application: thin film tensile test

For this final application, El-Numodis is confronted to classical DDD (i.e. standalone
Numodis) performing tensile tests on a model thin film. A 〈100〉-oriented Cu thin film of
250 nm thickness is generated and meshed using eight nodes hexahedrons discretized with 20
points along [010] and [001] directions while 10 points are used along [100]. The initial dislo-
cation microstructure is identical in both simulations. It is made of 25 Frank–Read sources of
0.2 µm length randomly distributed on the various slip systems of the FCC crystal structure.
The defects distribution is biased using a cutoff to avoid overlaping and boundary crossing.
Constant strain-rate simulation (ε̇ = 10−6 ns−1) is performed pulling from one of the (001)
lateral surface while the opposite one is kept fixed. Other surfaces are set stress-free in El-
Numodis. The mirror-image dislocation method is used in El-Numodis simulation only with
a cutoff distance of 60 nm while free-BCs are used in the pure DDD simulation. Equation (8)
feedback loop is used to correct the applied stress at the boundary in both simulations.

Computed stress–strain curves are shown in figure 11(a). Both SPM and DDD simula-
tions are characterized by an initial elastic load up to the activation of the first Frank–Read
sources. The pure DDD exhibits a higher yield stress when compared to El-Numodis (196
and 175 MPa, respectively) and, overall, a harder mechanical response all along the simula-
tion. Figure 11(b) shows both dislocation microstructures in the early stage of deformation.
One can easily identify the prior activation of parts of the Frank–Read sources close to the
surfaces in the SPM simulation, as indicated by the red arrows in figure 11(b). On the other
hand, the DDD simulation does not show any influence of the surfaces and the applied stress
within the sample is homogeneous what promotes the activation of Frank–Read sources loc-
alized in high-Schmid factor slip systems only. Here surfaces in the El-Numodis simulation
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Figure 10. Stress components of σ̃, σ̂ and total stress σ̃+σ̂ computed using El-
Numodis at the bottom-z surface close to a dislocation square loop.

behave as sinks that help the opening of the Frank–Read sources toward the surfaces in a sim-
ilar way that in the aforementioned TEM lamella case [46]. Moreover, accounting for surfaces
significantly influences the dislocation dynamics and elementary reaction processes between
dislocations. For example, some junction reactions initially observed in the pure DDD simu-
lation have shown to be anticipated by the surface-induced pump-out process modeled using
El-Numodis and the SPM method. This process influences the whole plastic regime which is
shown to be softer when accounting for the physics of surfaces. Additional simulations show
that increasing the film thickness tends to reduce the gap between pure DDD and the SPM
mechanical responses while increasing the cutoff used in the mirroring dislocation method
tends to decrease the yield stress.
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Figure 11. Thin film tensile test: standalone Numodis (DDD) vs. El-Numodis (SPM).
(a) Stress–strain curves, (b) comparative dislocation microstructures at the yield point
(black = Numodis, green = El-Numodis). Red arrows highlight early emerging dislo-
cations in the El-Numodis simulation. Black arrows refer to the tensile direction.

4. Conclusion

Here we present a tool based on the SPM method called El-Numodis to model dislocation
dynamics in finite-size environments. The approach couples the nodal DDD code Numodis
and the Elmer FEM code used here as an elastic solver of BVPs where the BCs are corrected
by the effect originating from the presence of dislocations. El-Numodis refers on three external
drivers that ensure the various operations and exchange between the DDD and FEM parent
codes. It benefits of specific modern developments including the non-singular dislocation the-
ory of Cai [50], the mirror image method [27] as well as a Monte-Carlo based dislocation
nucleation algorithm that allow for more physics-based dislocation simulations at the micro-
and nano-scales. From a technical viewpoint, these developments make El-Numodis particu-
larly versatile (and not more complex) than its original DDD parent code Numodis [47, 48].
In this study, El-Numodis was widely benchmarked including several test-cases designed to
investigate interactions between dislocation and surfaces. Among others, straight and square-
shaped dislocations were tested in the vicinity of free-surfaces where El-Numodis has shown to
be particularly suited to relax surface stress fields. A dislocation nucleation algorithm using a
Monte-Carlo approach and the TST was also introduced. It will be soon extended to the study
of dislocation nucleation in nanoparticles using energy barrier databases [85]. Finally, last
tensile tests applications performed on model thin films completes the picture of El-Numodis
potential. Besides ongoing improvements as on force calculation [91, 92] or Gauss integration
[93], we believe that El-Numodis is now ready for various kinds of applications in the field of
small-scale mechanics.

Data availability statement

El-Numodis is available on-demand contacting the authors at laurent.dupuy@cea.fr and
jonathan.amodeo@cnrs.fr.

All data that support the findings of this study are included within the article (and any
supplementary files).
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