
Gibbs energyminimisation model for the austenite-ferrite
phase transformation in Fe-C-X-Y alloys
Alexandre Mathevona,b, Michel Pereza,b, Véronique Massardiera,b,
Damien Fabrèguea,b, Patrice Chantrennea,b and Philippe Rocaboisa,b

aUniv. Lyon – INSA Lyon – MATEIS – UMR CNRS 5510, Villeurbanne, France; bFives Keods, Maisons-
Alfort, France

ABSTRACT
A new model has been developed to predict austenite ↔
ferrite transformation kinetics in steels. For each alloying
element, the concentration profile is computed solving a
unique diffusion equation (including the 2 phases and the
interface). The interface is described assuming linear
variation of chemical potentials, saving thus computational
time. Interface motion is driven by the minimisation of
Gibbs energy. The model naturally reproduces the transition
between thermodynamic equilibria (Para equilibrium, Local
equilibrium with negligible partitioning, Local equilibrium)
during heating. The validity of the model for reverse
transformation has been validated on ternary and
quaternary systems Fe-C-(Mn-Si-Mo) on decarburisation
experiments.
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1. Introduction

The development of steel grades such as Dual-Phase, Transformation Induced
Plasticity [1] or Medium Manganese [2] steels is based on a thorough knowl-
edge of phenomena occurring during austenite (γ) ↔ ferrite (α) phase trans-
formations. These phenomena (namely recrystallisation, recovery, nucleation,
diffusion/interface controlled growth), may occur simultaneously and interact
with each other, leading to complex overall transformation kinetics.

Several types of modelling approaches have been proposed in order to
understand the role of alloying elements (C, N, Mn, Ni, Cr, Si,…). The simplest
view is based on the concept of a sharp interface between ferrite and austenite,
where some kind of thermodynamical equilibrium is fulfiled (i.e. Paraequili-
brium, local equilibrium with or without partitioning – see ref. [3] for more
details). Thermocalc diffusion module (DICTRA) is based on these assump-
tions [4] and the equilibrium conditions are obtained using CALPHAD
methods. Unfortunately, this approach cannot reproduce kinetics that deviate
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from these equilibrium (i.e. transition from para to local equilibrium) and
solute flux balance at the interface often leads to numerical issues [5].

Mixed-mode models overcome the problem of solving complex multiple
elements diffusion profiles by introducing the concept of interface mobility,
with its own kinetics. This approach makes it possible to reproduce experimen-
tal kinetics [6–10], but the mobility applied to take into account the interaction
of other elements has no physical meaning, limiting thus predictive capacities of
such models.

Another family of models assume a quasi-permanent regime at the interface,
where the transformation kinetics is driven by the balance between energy dis-
sipation and driving force [11,12]. However, these models hardly capture
changes in interface direction due to manganese partitioning while having a
complete monitoring of the concentration profiles within the 2 phases.

Chen and Perevoshchikova [13,14] proposed a complete 2D-Phase Field (PF)
model to describe the austenite formation during a heating within a ferrite-pear-
lite matrix. This study is based on a Mixed-mode model including solute drag to
take into account the slow partitioning of the substitutional elements. The PF
approach is nevertheless based on a mathematical approach that aims to
smooth interface and interpolate the properties of each phase within the inter-
face, posing the problem of the real vs modelled interface characteristic size.

In this paper, a new algorithm has been developed to predict γ ↔ α
transformation kinetics in complex systems iron alloys. The originality of this
approach is that, for each element, the concentration profile is computed
solving a unique diffusion equation (including the 2 phases and the interface),
insteadof solvingdiffusion equations in each phase anddealingwith themass con-
servation equations of each species to get the interface velocity. The interface is
described using chemical potentials driving the thermodynamics of the system.
Interface motion and solute fluxes are treated in a simple framework, allowing
to predict the kinetics of phase transformations in many cases without any
fitting parameters.

2. Simulation method

The model described in this paper is based on the prediction of (i) concen-
tration profiles for all elements in ferrite and austenite, and (ii) interface
migration, thanks to the minimisation of the total Gibbs energy in the entire
system (i.e. 1D phase field approach).

The local Gibbs energy of a given phase is the weighted sum of the partial
molar Gibbs energies (chemical potentials) of each element, given by Gibbs-
Duhem relation. For the sake of computational time, it is assumed here that
the energy of a multi-component system (e.g. FeXY) is the linear combination
of the energy of binary systems (FeX+FeY) composing the multi-component
system. This hypothesis leads to the following expression for the Gibbs
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energy for node i:

G|i = m0
Fe,j +

∑

k

[mB
Fe,j(Xk|i) · (1− Xk|i)+ mB

k,j(Xk|i) · Xk|i − m0
Fe,j] (1)

where m0
Fe,j is the chemical potential of pure iron in phase j, mB

Fe,j(Xk) and
mB
k,j(Xk) are the chemical potentials of iron and element k in a binary Fe/k

system of composition Xk|i in phase j (α or γ).
With such an approach, the energy of a multi-component system containing

n elements only requires the knowledge of n binary databases, that can be cal-
culated from TCFE8 Thermocalc database a priori. In other words, cross inter-
action terms are neglected with such a linear assumption.

A validation test was carried out to compare the use of Gibbs-Duhem
equation (using TQ interface and TCFE8 database) instead of Equation (1).
It led to less than 3% error on the phase fractions at the final equilibrium for
a 0.17C− 1.7Mn steel at 780 ◦C. Despite providing exact fractions predicted
by TCFE8 database, the complete coupling (Gibbs-Duhem equation and TQ
interface) suffers from intractable computational times. This is why we use
Equation (1) to previously generate a database from TCFE8.

These conditions are valid in all applications presented hereafter because they
are limited to rather low-alloy compositions. For more concentrated alloys, an
additional terms should be considered. Moreover, taking into account the inter-
facial energy for 2D or 3D simulations as well as additional physical phenomena
(strain transformation, electromigration,…) affecting the Gibbs energy could be
straighforwardly added to the model. The weighted sum of the Gibbs energies
over all nodes gives the total energy of the system, which will be the potential
function, that will be minimised when considering interface motion.

Chen et al. [12] uses a modified Fick equation to model diffusion profiles
within a mobile interface with chemical potential gradients. The diffusion
equation providing the concentration profiles of each chemical element k in
1D is extended to the whole system in a fixed reference which leads to:

∂

∂x
Dk,j

∂Ck

∂x
+

CkDk,j

RT

∂m0
k,j

∂x

( )

= ∂Ck

∂t
(2)

where Ck is the concentration of element k, T is the temperature, x is the dis-
tance, R is the ideal gas constant, Dk,j is the diffusion coefficient and m0

k,j is stan-
dard chemical potential for pure iron of element k in phase j (as shown in
Figure 1 b). Boundary conditions fulfil:

∂Ck

∂x

∣∣∣∣
x=0,L

= 0 (closed) or Ck|x=0,L = C0 (open) (3)

whether the system is closed or open (C0 is the imposed concentration at
sample boundaries).
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Equation (2) is equivalent to the classical Fick’s law outside the interface
(∂m0

k,j/∂x = 0), where concentration gradients tend to flatten. Within the inter-
face of size 2d, the chemical potential is supposed to vary linearly between the
chemical potential of ferrite (m0

k,a) and austenite (m0
k,g) (see Figure 1b) in order

to solve diffusion equations in a unique framework. Compared to Ref. [12], vel-
ocity does not appear explicitely in Equation (2) because we use a Eulerian spe-
cification (fixed integration gird), whereas Chen et al. used a Lagrangian
specification (following the interface). Note that it is possible to add a potential
well at the interface in GEMmodel, in agreement with Cahn that may lead to an
increase of solute atoms segregating and interface friction. The diffusion coeffi-
cient of element M inside the interface DInt

M is assumed to be the geometric
average of the diffusion coefficient of M in austenite Dg

M, ferrite Da
M and the

ferrite grain boundary DGB
M . Value of DGB

M are obtained from [15].
The diffusion equation (Equation (2)) is solved using 1D implicit scheme for

each element k. We choose for each node i the following discretised equation:

Ck|t+Dt
i −Ck|ti
Dt

=
Dk,j|i(Ck|t+Dt

i+1 − Ck|t+Dt
i )+ Dk,j|i−1(Ck|t+Dt

i−1 − Ck|t+Dt
i )

Dx2

+
Dk,j|i+1Ck|t+Dt

i+1 (m0
k,j|i+1 − m0

k,j|i)− Dk,j|iCk|t+Dt
i (m0

k,j|i − m0
k,j|i−1)

RTDx2

(4)

Figure 1. (a) GEM model algorithm. (b) Diagram of linear chemical potential profile used. (c)
Example of concentration profile obtained when selecting the interface position.
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The interface displacement is based on total Gibbs EnergyMinimisation (GEM)
with respect to the interface position:

∂Gtot

∂xint
= 0 with Gtot =

∑

i

G|i (5)

where xint is the interface position. The general algorithm used in this approach
is shown in Figure 1 a. At each time step, (i) the total Gibbs energy of the system
is calculated after a diffusion step (energy Gtot

0 ); then, (ii) the interface is moved
by one grid step forward and a diffusion step is performed (energy Gtot

+1); finally,
(iii) the interface is moved by one grid step backward and a diffusion step is
performed (energy Gtot

−1). The position of interface corresponds to the position
of the lowest total Gibbs energy (Gtot

−1, G
tot
0 or Gtot

+1). At each calculation step, the
time and space steps is the same for all chemical elements and with a fixed space
step through the simulation small enough to ensure a negligible interface size
compare to system size. Time steps have been optimised in order (i) to
obtain an accurate interface velocity and (ii) to optimise computation time.
For a given interface velocity v (fixed by the physics of the system), the displa-
cement Dd of the interface in one time step Dt is given by Dd = vDt. If
Dd ≪ Dx (Dx is the space step), the time step can be increased in order to
save computation time. If Dd ≫ Dx, probing only adjacent positions (G−1

tot ,
G0
tot and G+1

tot ) is not enough and would lead to incorrect interface velocity,
time step has therefore to be decreased. The ideal situation is then Dd & Dx.
Practically, this ideal scheme is ensured by increasing the time step if the
system lies more than 5 time steps at the same position and decreasing the
time step if the system lies less than 3 time steps at the same position.
Finally, the width of the interface has negligible effect on the transformation
kinetics (in a range tested from 0.5 nm to 50 nm according to the literature)
if it remains less than 5% of the total length of the system.

3. Results and discussion

The relevance of this model, is first tested on the ferrite to austenite transform-
ation during an isothermal treatment of a Fe–0.17 C–1.7Mn low-alloy steel.

During heating of pearlitic Fe-C-Mn steel, Wei et al. [16] and Chantrenne
et al. [5] showed that the austenite formation kinetics occurs in 4 stages to
reach final ortho-equilibrium (see Figure 2 a). In the present study, the initial
structure is a mixture of deformed ferrite and pearlite resulting from hot and
cold rolling (see Ref. [17] for more details). The transformation was modelled
by a 5 μ m 1D simulation cell (10000 nodes and d = 5 nm) with closed bound-
ary conditions for each elements, corresponding to half the distance between
the Mn rich segregation bands. Diffusion coefficients from the MOBFE3 mobi-
lity database were used and summarised in Table 1.
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The simulation starts with a 0.1 μm austenite region (containing 6.67 wt%C
and 10 wt%Mn), resulting from the fast transformation of cementite (see Ref.
[5,10] for more details on this initial state).

Figure 2a shows the ferrite to austenite transformation kinetics during iso-
thermal treatments performed at 760 ◦C and 780 ◦C resulting from GEM
model. The transformation occurs in 4 stages. The transformation is controlled
by (I) C diffusion without Mn diffusion (i.e. para-equilibrium), (II) Mn
diffusion in ferrite (i.e. local equilibrium without partioning), (III) Mn
diffusion in austenite, (IV) Mn diffusion in ferrite (i.e. ortho-equilibrium).
The back and forth interface motion observed in Figure 2a is due to the
initial high Mn concentration of cementite, that needs to redistribute along
the whole sample before reaching full equilibrium (see diffusion profiles in

Figure 2. (a) Comparison of austenitic transformation kinetics between LE model (DICTRA),
Thermocalc TCFE8 equilibrium and GEM model. (b) Carbon and (c) manganese concentration
profile snapshots at 760 ◦C. Transition trajectories of compositions at the interface on the iso-
thermal section of the Fe-C-Mn phase diagram at 760 ◦C for phase transformations in stage: d)
I. ,e) II. and f) III.
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Figure 2 b,c). The first stage of the transformation is driven by the carbon
diffusion in austenite leading to concentrations close to the one predicted by
the para-equilibrium (no Mn diffusion, see Figure 2 d), in contrast to
DICTRA, which imposes local equilibrium at the interface. Subsequently, the
system reaches an equilibrium state (with manganese diffusion in ferrite)
close to local equilibrium without partitioning. Then, the system reaches
local equilibrium at the interface and finally ortho-equilibrium (see Figure 2
e,f).

Transformation kinetics from GEM model are compared with simulations
resulting from LE (DICTRA). Both approaches lead to similar results. As
stated in Ref. [5], DICTRA does not respect mass balance, explaining thus
the 5% final austenite fraction difference between DICTRA and LE equilibrium
for long simulation times. GEM respects mass balance but leads to a 2% error
due to the use of simplified Equation (1) (linear combination of binary
systems).

This example illustrates the capability of GEM model to move the interface
from one way to the other without any modification of the code. Moreover, the
GEM model only needs initial concentration fields in both phases without any
additional assumption on the type of equilibrium: i.e. the transition between
different kinds of equilibrium (para & local & full) is naturally described.
The model also conserves alloying element mass throughout the simulation.
In addition, for the same simulation system, the GEM model allows to divide
the calculation time by 60 compared to DICTRA and a factor 50 compared
to another implementation of LE model [5]. This time reduction is mainly
due to the choice of this model on the interface description. Indeed, at each
time step the GEM model has only three profiles to compute, whereas the
DICTRA algorithm is based on a loop that finds the interface velocity satisfying
local equilibrium and mass balance. This optimisation is all the more complex
when the number of elements increases.

In a second step, decarburisation experiments are a smart way of studying
austenite to ferrite transformation because it overpasses many difficulties
encountered in more ‘classical’, so called precipitation transformations (e.g.
nucleation, overlap of carbon diffusion fields). In addition, the literature
includes numerous accurate results on Fe-C-X and Fe-C-X-Y systems: i.e. the
displacement of the interface is measured with a precision of approximately
5 μm over distances of about 300 μm [11,18–20]. Note that these

Table 1. Activation energy (Q) and pre-exponential factor (D0) of diffusion coefficients of C and
Mn in ferrite and austenite used for austenite formation (extracted from the MOBFE3 database
of Thermo-Calc).
Elements C in α C in γ Mn in α Mn in γ

Q (kJ/mol) 115.8 144.2 321.8 263.2
D0 (m2/s) 9.9× 10−5 1.7× 10−5 4.6 1.7× 10−5
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decarburisation experiments involve temperatures close to AC1 and transform-
ation kinetics ten times slower than precipitation transformations.

Initial simulation boxes for decarburisation are semi-infinite 1D (500 μm,
100000 nodes and d = 50 nm) with homogeneous nominal composition of
the steel. Simulation starts with one node of ferrite, for which the C concen-
tration is forced to be 0, at one extremity of the simulation cell. The other extre-
mity has a zero flux condition. The carbon diffusion coefficient in austenite and
ferrite (dependent on carbon content) was obtained from [21,22].

Figure 3 compares GEM model with experiments for 2 ternary and 2 qua-
ternary alloys. Without any fitting parameter, the agreement is remarkable
for all systems. For the sake of comparison, interface position under Local equi-
librium with negligible partitionning and paraequilibrium are represented in
Figure 3. These equilibrium conditions are rarely satisfied in real systems.
The self consistent model of Zurob et al. [11] based on Gibbs Energy balance
between interface friction and driving force is also compared to experiments
and GEM model. It can be observed on Figure 3 that GEM and Zurob’s
models are superimposed for all cases, except for the the quaternary Fe-C-
Mn-Si system, where Zurob’s model fails to describe experimental results
with the same parameters as those adjusted on ternary systems.

Note that solute drag, that underlies the GEM model and the self consistent
model of Zurob (as well as the GEB model of Chen et al. [12]) is responsible for
monitoring phase-transformation kinetics. We also have tested the GEMmodel
with the same potential well as Zurob and GEB models, without any significant
effect on both transformation kinetics which establishes that the potential well
is not a necessary ingredient of GEM model. Moreover, this transformation
slowdown has been observed in the GEM model for ferrite precipitation simu-
lations at lower temperatures (higher driving forces and higher transformation
kinetics). In these conditions, the introduction of a potential well leads to solute
atoms segregation at the interface that hinders interface motion and leads to a
drastic slowdown of the interface motion.

Figure 3. Decarburisation kinetics for (a) Fe-0.57C-0.94Mn (806 ◦C) (b) Fe-0.54C-0.51Mo
(806 ◦C) (c) Fe-0.68C-1.58Mn-1.33Si (806 ◦C) (d) Fe-0.49C-1.09Mn-0.42Mo (806 ◦C). The results
of the Zurob model presented were extracted from [11,18,19]
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We have presented a new phase transformation model based on the Mini-
misation of Gibbs Energy (GEM model). As entry parameters, it requires
diffusion coefficients of all elements, as well as a thermodynamic database,
that can eventually be created a priori, from linear combination of binary
systems, computed from TCFE8 database. GEM model provides the kinetics
of a & g and g & a transformations without imposing any type equilibrium
conditions at the interface. GEM model accurately reproduces transformation
kinetics and concentration profiles for all solute species (including C) for
heating and cooling. GEM model is also able to account for solute drag that
slows down interface motion, but introducing a chemical potential well at
the interface is not a necessary ingredient to correctly describe decarburisation
experiments. This numerical approach respect mass balance and leads to drastic
reduction of the computation time compared to existing models. Extension to
systems containing more than 4 elements is relatively simple. Cementite dissol-
ution as well as non-isothermal conditions could also be relatively straightfor-
wardly implemented.
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