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Crystallization of finite-extensible nonlinear elastic Lennard-Jones coarse-grained polymers
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The ability of a simple coarse-grained finite-extensible nonlinear elastic (FENE) Lennard-Jones (LJ) polymer
model to be crystallized is investigated by molecular dynamics simulations. The optimal FENE Lennard-Jones
parameter combinations (ratio between FENE and LJ equilibrium distances) and the optimal lattice parameters
are calculated for five different perfect crystallite structures: simple tetragonal, body-centered tetragonal, body-
centered orthorhombic, hexagonal primitive, and hexagonal close packed. It was found that the most energetically
favorable structure is the body-centered orthorhombic. Starting with an equilibrated polymer liquid and with the
optimal parameters found for the body-centered orthorhombic, an isothermal treatment led to the formation of
large lamellar crystallites with a typical chain topology: folded, loop, and tie chains, and with a crystallinity
of about 60%–70%, similar to real semicrystalline polymers. This simple coarse-grained Lennard-Jones model
provides a qualitative tool to study semicrystalline microstructures for polymers.
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I. INTRODUCTION

The mechanical properties of semicrystalline polymers
result from their multiscale complex microstructure, mainly
characterized by stacking of crystalline and amorphous lamel-
lae of a few microns length and a few nanometers thickness
[1–6]. Several unknown features are resistant to experimental
analysis mainly because of the nanometric scale. For instance,
interphase layers, but especially specific molecules such as
tie molecules (TMs), which link two adjacent crystallites, are
known to play an important role in the mechanical properties
even if no quantitative description of their contribution on the
mechanical properties is available [7]. Indeed, no experimental
technique permits to investigate the concentration and topol-
ogy of TMs. The TM content is therefore evaluated only indi-
rectly by mechanical testing or by statistical analysis [8–11].

Molecular dynamics (MD) simulations, which can ben-
efit from increasing computing power, are excellent tools
to overcome the difficulties of experimental measurements
and can be used to study the nonequilibrium process of
crystallization at the nanoscale and the mechanical properties
of nanostructured systems, which are important in particular
for polymers [12–64]. MD simulations of semicrystalline
polymers can be performed at different length and time scales
with different levels of complexity. Explicit atom (EA) models,
where all the hydrogen atoms are taken into account explicitly,
can give precious insight on the role of TMs on the mechanical
properties of semicrystal [18,19] but they are time consuming
since they treat explicitly C-H bond vibrations: Since the
equilibration time is thus very large for system sizes of interest
they are not suited for studying large deformations. In order
to decrease computational time, an alternative approach is to
consider each unit or “bead” of the polymer chain either as
a CH2 or CH3 group (united atom (UA) models [20–47]),
or as a few structural carbons or monomers (coarse-grained
(CG) models [48–55,57–60]). Order-oriented phase structure
was observed and discussed with UA models mimicking
n-alkane or polyethylene polymer for a single chain [21–25]
and for multiple length chains in vacuum [24,26–30]. The
chain folding phenomenon with various chain lengths and tor-
sional angle deformation barriers has been examined [22,23].

UA Langevin dynamics simulations have been performed to
understand early-stage polymer crystallization [24,25], the
diffusion of chains to the crystal growth front [25,26], and
crystallization in extensional flow [27]. Nucleation processes
and crystal growth from an isotropic melt [31–33], along
substrates [32,34–39] or from an oriented melt [40–45], and
cold crystallization after a rapid quenching of a melt [37,46]
have also been studied with UA models. Unfortunately, the
computational time to study crystallization would not be
sufficient to simulate the growth of large lamellae. In CG
models the size of the system as well as the time scale involved
are large enough to fully address the problems of the size,
thickness, and shape of the lamellae as well as the molecular
topology (e.g., TM concentration). Moreover, the mechanical
properties can be easily evaluated even for large deformation
[13–17]. In CG models, bonded units in a chain interact
through springs. The stiffness of the chain can be modeled by
bending and/or torsional potentials, while nonconnected units
interact through a Lennard-Jones potential including excluded
volume and van der Waals interactions. In these models, it is
possible to optimize the potential parameters to quantitatively
study the crystallization process of specific systems. For
example, a CG potential optimized for describing polyvinyl
alcohol (CG-PVA) [51] showed realistic chain folded lamellae
in semicrystal after rapid quenching [52,53]. In this CG-PVA
model only the repulsive part of the Lennard-Jones potential is
taken, while the attractive part is replaced by applying an exter-
nal pressure. This CG-PVA has been used recently to generate
semicrystalline systems exhibiting large fraction and density
of crystallites and has been proved to successfully mimic the
main features of classical semicrystalline systems [16,17].
With the same CG-PVA model, homogeneous nucleation and
growth of a single polymer lamellae crystal was observed from
a melt via self-seeding [54]. The same authors showed the
importance of the entanglement for the crystallization process
for nonconfined [55] and confined polymer melts [56]. The
minimal approach of the CG model is the qualitative and not
quantitative Kremer-Grest (KG) bead-spring model [48] where
bonded chain units are connected by finite-extensible nonlin-
ear elastic (FENE) bonds that prevents chain crossing and
nonbonded chain units by classical Lennard-Jones potential.
Even if the KG model has proved its performance to reproduce
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the qualitative behavior of glass polymer [12–15,65,66], as
it is, it is not usable to study polymer crystallization with
MD. A first solution was to enforce the equilibrium length of
bonded units to be commensurate with the equilibrium length
of nonbonded units [57]. Massive crystallization was observed,
but chain morphology is not realistic and system crystallizes
just like a Lennard-Jones liquid. An angular potential to get
more realistic crystallites was therefore added [58], but it was
limited to relatively small box size.

In this paper, we test the ability of a simple coarse-grained
FENE Lennard-Jones potentials model based on the KG model
to qualitatively represent all microstructural features exhibited
by a real semicrystalline polymer: (i) chains are parallel in
the crystal; (ii) the lattice is never cubic due to the strong
difference between the C-C bond length and the weak bond
length; (iii) crystallites mainly grow perpendicular to the chain
direction, thus forming platelike lamellae; (iv) chains are
partially folded in a single crystallite; (v) we expect several
topologies for the amorphous phase: loop, folded, and pending
chains and some chains belong to several crystallites forming
TM; (vi) crystallinity degree of linear polymer ranges between
20% and 80%. Even if the KG approach cannot be directly
compared to real polymers in a quantitative way, this kind of
tool is essentially useful to understand the general features
of crystallization in semicrystalline polymers and to test the
realism of alternative ideas and concepts that could be then
used for modeling of real polymers.

We can use two main numerical strategies to investigate
the mechanical behavior of nanostructured systems, such as
semicrystalline polymers. The first approach consists in artifi-
cially organizing macromolecules into lamellar microstructure
as observed for real polymers [18,19,61–64]. This microstruc-
ture is realistic and the influence of parameters such as
lamellae thicknesses or TM concentrations on the mechanical
properties can then be tested in realistic conditions. However,
such well-organized microstructures may not be the natural
equilibrium for the chosen model system. This is particularly
critical when strongly stretching this system, which could
lead to a nonrealistic microstructure yielding questionable
conclusions on the TM, loop concentration, and thus the
deformation mechanisms. The second approach to be used
in this paper consists in first equilibrating macromolecules
in the melt state and, then, cooling down the system to
obtain crystallites [16,17,31,32,52–55,57,58]. Here, the final
system is clearly closer to the natural equilibrium of such
systems but the resulting microstructures could be far from the
experimental observations. Indeed, cooling rates are generally
rather high and correspond to extreme quenches, leading to
disordered microstructures.

The paper is organized as follows. Section II presents our
model, potentials, systems, and computational methods. At
the beginning, we will consider perfect crystalline structures
with fixed lattice parameters in order to find optimum values
of the parameters of the interatomic potential; these structures
are then allowed to relax without constraints on the lattice
parameters in the following full CG MD simulations to study
the crystallization dynamics. In Sec. III, we investigate and
select optimal Lennard-Jones lattice parameters obtained from
the analysis of Sec. II for five different perfect crystallite
structures. This section is also devoted to the thermal stability

of selected structures and focuses on natural crystallization
from a polymer melt. A conclusion is given in Sec. IV.

II. MODELS AND METHODS

We use a coarse-grained polymer model based on the
KG model [48] where polymer chains consist of “beads”
representing a few structural units. All simulations are made
in three dimensions.

A. Interaction potentials

The model is based on two potentials, where energy, length,
and time units are given by εu, σu, and τu, respectively (with
τu = √

muσ 2
u /εu, where mu is the mass unit). The temperature

unit is given by εu/kB . Intrachain interactions of bonded
beads corresponding to covalent bonds are given by a FENE
potential:

VFENE(r) = −0.5kR2
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with k = 30 εu/σu
2, R0 = 1.5 σu, ε = 1εu, and σF = 1.05 σu.

We choose the value of σF such that VFENE(r = 1σu) is
minimum. All other weak interactions between two beads of
different chains or between two nonbonded beads of the same
chain are modeled by a simple Lennard-Jones potential:
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where ε = 1εu, rc = 2.5σ is the cutoff radius, and σ is a
parameter of the potential that will be adjusted in order to
obtain the ideal crystallographic structure of each studied
system.

Newton’s equations of motion are integrated with the
velocity Verlet method with the time step �t = 0.005τu.

B. Systems and MD simulation protocol

Real semicrystalline polymers do not exhibit cubic lattice,
essentially because the covalent bond length strongly differs
from the smaller bond length. In addition, real monomers
are never perfectly spherical. Therefore, the lattice with the
highest symmetry is orthorhombic (e.g., polyethylene). As a
result, the chosen system should not exhibit cubic structure
that would authorize unphysical multiple orientation of chains
within a crystallite. Here, five lattices are investigated: simple
tetragonal (tP), body-centered tetragonal (tI), body-centered
orthorhombic (oI), hexagonal primitive (hP), and hexagonal
close-packed (hcP). These lattices are presented in Fig. 1. Each
lattice is defined by its distance a, b, and c and angle α, β, and
γ lattice constants. Nonorthogonal structures (rhombohedral,
monoclinic, and triclinic) are not investigated considering that
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FIG. 1. The top views of simple tetragonal (tP), body-centered tetragonal (tI), body-centered orthorhombic (oI), hexagonal primitive (hP),
and hexagonal close-packed (hcP) are represented. The c axis is perpendicular to the paper sheet. The yellow atom at the center of the lattices
tI and oI, and the three additional atoms of the lattice hcP compared to hP are in the plane just above or below the reference plane at ±c/2.

the symmetry of the chain is here strong enough to prohibit
such lattices.

We perform three kinds of simulations: (i) static ground
energy calculations for the above-mentioned perfect crystal
structures, first without and after with relaxation and mini-
mization, to optimize σ and the crystallographic parameters
of each system; (ii) nonisothermal MD calculations to test the
thermodynamic stability of each system; and (iii), isothermal
large-scale MD simulations to study crystallization of polymer
melts. In simulations (ii) and (iii) no constraints are applied
on the lattice parameters of the crystalline structures, which
dynamically evolve under the applied force field in the NPT
ensemble.

1. Statics calculations

Five simulation boxes with fully periodic boundary con-
ditions are made of a periodic arrangement of 1600 straight
chains of 20 beads, respectively, with the five lattices presented
in Fig. 1, where the chain axis is in the c direction (perpendic-
ular to the paper sheet in Fig. 1). The box size in the c direction
corresponds to about three times the maximum cutoff radius
rc. The chain ends are eliminated as the first and last atoms of
each chain are bonded by FENE bonds, thanks to the periodic
boundary conditions, as if each bead is identical and included
in an infinite perfect crystal. As a consequence, no surface
energy affects the result.

The aim is to find the best structure to favor crystal
stability and further crystallization. Firstly, the energy of the
investigated configurations for several values of the potential
parameter σ and the crystallographic parameter a/c with
c = 1σu is measured without any modification of the crystal’s
perfect structure; i.e., no minimization and no relaxation are

performed. The σ parameter varies from 0.05 to 2.5σu with the
increment 0.01σu and a from 0.5 to 3σu with the increment
0.001σu. During this stage, we fix a = b for the tP, tI, hP,
and hcP structures, and b = a

√
3 for the oI structure, so that

the interchain distance is equal to a. A set of parameters σmin

and amin/c for which the energy is minimized is then found
for each structure. Starting from configurations with a = amin,
minimization computations by conjugate gradient algorithm
at a pressure of 0.0εu/σ

3
u are then performed, for σ varying

from σmin − 0.04 to σmin + 0.04 with the increment 0.001σu.
These minimization computations allow the relaxation of the
box in all directions to find a best set of parameters: σ and the
crystallographic parameters a, b, and c. of each system.

2. Melting

In order to study the melting, simulation boxes are made of
a periodic arrangement of 1600 straight chains of 100 beads. In
order to avoid undesired surface effects1, the two chain ends
are randomly positioned along each straight chain. Thermal
stability has been tested along a thermal cycle consisting in
a ramp from 0 to 4εu/kB (cooling rate: 0.5 × 10−4εu/kB/τu).
Time integration has been performed in the NPT ensemble
with a target pressure of 0.0εu/σ

3
u .

1Systems with “infinite” loop chains aligned in the z direction and
looped by the periodic boundary conditions led to unphysical high
melting points. Systems with chain ends located in a plane, forming a
free surface (grain boundary), led to complex transformations at low
temperature involving the free surface itself. These two cases have
therefore been discarded in order to simplify the interpretation of the
bulk melting.
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3. Isothermal crystallization

Much larger systems consisting of 2688 chains of 101 beads
have been generated in order to obtain as many crystallites as
possible. Starting from an equilibrated melt at T = 3.3εu/kB

see Sec. II C), where it was verified that no crystallization
occurs, temperature is then decreased to 2.3εu/kB (cooling
rate: 5 × 10−6εu/kB/τu) and maintained during 4.5 × 105 τu.
This isothermal temperature has been chosen after an extensive
test campaign in order to maximize the size of the crystallites;
i.e., the driving force for crystallization is moderate at this
temperature, leading to a relatively low density of nuclei of
large critical size. Moreover, at this temperature, the relatively
high mobility induces a fast growth of crystallites.

C. Preparation of the polymer melt

Polymer chains have been generated and equilibrated using
the radical-like polymerization (RLP) method [67]. This
method starts with a Lennard-Jones bath of Nmon monomers,
M of them being radicals. At each growth step, each radical
connects with a new monomer with a harmonic bond and
transfers the radical to the chosen monomer. Between each
growth step, the system is equilibrated during 1.5τu. When a
chain reaches the size N its two radicals are deactivated. At
the end of the algorithm M chains of N beads are formed.
The unused monomers are removed from the simulation. The
system is then equilibrated during 5 × 104τu at T = 4εu/kB

and P = 0.5εu/σ
3
u in the NPT ensemble. Then, after the idea

of [68], N − 1 beads are inserted within two beads of the
initial chains so that we obtain chains of 2N − 1 beads.
At that step, the harmonic potential is replaced by a FENE
potential with an equilibrium distance of about 1σu. The final
system consists of M chains of 2N − 1 beads, for which the
interchain distance is about 2σu whereas the distance between
two beads in a chain is close to 1σu. The system is finally
equilibrated at T = 4εu/kB for 5 × 104τu (see explanations
in Sec. III C 1). For the preparation of our polymer melts we
have taken Nmon = 160000, M = 2688, and N = 51.

III. RESULTS

A. Ground energy of crystallographic systems

In this section, the different crystallographic structures
introduced in Sec. II will be tested and their stability compared.

For all structures, the ground state energy depends on three
variables: a, c, and σ . The aim is to find values of a, c, and σ

that will minimize the energy of each structure. In a first stage,
as the covalent bond is much stiffer than a weak bond, we
chose to set c = 1σu, so that the energy depends only on two
parameters, a and σ . No minimization and no relaxation are
performed at this stage. Note that, in reality, when considering
that the distance a is the distance between two chains and
c the distance between two carbon atoms in the same chain,
experimental values of a/c are much higher than 1σu. For
example, they are close to 4σu for polyethylene and polyamide.

In Fig. 2 the energy landscape obtained is represented versus
the potential parameter σ and the crystallographic parameter
a/c for c = 1σu. Here only the oI structure is represented;
however, all the structures exhibit nearly the same appearance.
The orange plateau corresponds to a diluted medium where

FIG. 2. (a) Side and (b) top view of the energy landscape per
monomers versus the potential parameter σ and the crystallographic
parameter a/c for body-centered orthorhombic (oI) structure for c =
1σu. For the sake of clarity, high energies are truncated to 25 εu (top
left, yellow region). In this energy landscape a valley appears with an
optimum configuration.

chains are far from each other. The value of the energy is
essentially given by the FENE contribution. For the sake of
clarity, in the yellow region, the energy is arbitrarily truncated
to a maximum value of 25εu. Indeed, in this region the chains
are close to each other and the Lennard-Jones bonds are
in a compressive state increasing the energy strongly. Note
that for the very low a/c ratio and high σ the cutoff radius
is higher than the box size. However, as these systems are
obviously extremely constrained their energies are in any case
truncated. Therefore, they are not relevant for the present study.
In the energy landscape shown in Fig. 2 a valley appears
corresponding to an optimum configuration where most of
the atoms are in a position close to their minimal energy. The
bottom of this valley is plotted versus σ for all the structures
in Fig. 3. In this way, we obtain the set of parameters σmin and
amin/c for which the energy of each structure is minimized.

In a second stage, the minimization computation by a
conjugate gradient algorithm at a pressure of 0.0εu/σ

3
u is

performed allowing the relaxation of the box in all directions.
Finally, a minimal relaxed energy configuration is found with
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FIG. 3. Bottom of the energy valleys versus the potential param-
eter σ for all the structures.

an optimum set of parameters a, c, and σ ; see Table I. Note
that after the minimization, the crystallographic configuration
of each structure does not change.

It appears that hexagonal primitive (hP) and body-centered
orthorhombic (oI) structures exhibit the most stable states for
a σ close to 1.89σu and aspect ratio a/c of about 2. The other
orthorhombic systems seem to be less stable and the hexagonal
compact one is clearly the less stable and is eliminated from the
present study. From these first evaluations, only four structures
have been selected: tP, tI, oI, and hP.

In the following, structures associated with their optimized
σ parameter will be referred to as systems.

B. Melting

Thermal stability of the four different selected systems, oI,
tI, tP, and hP, has been tested along a thermal cycle consisting
in a ramp from 0 to 4εu/kB . Figure 4 shows the evolution of
the enthalpy of the four investigated systems. It can be noticed
that the slope of H (T ) versus T is close to 3, which agrees
with the equipartition theorem (�Ek = �Ep = 3/2 kBT )
considering three degrees of freedom and negligible pressure
(�H = �Ep + �Ek + � (PV ) ≈ 2�Ek = 3kBT ). For all
systems, the enthalpy variation due to melting is approximately
2εu per atom, which corresponds roughly to 0.15 − 0.20εu

per bond (as in the crystal a bead has approximately ten
neighbors when excluding their first intrachain neighbors).
At the melting temperature, the total variation of enthalpy
�H = H (T ) − H (T = 0) is close to 1εu per bond.

Surprisingly, the enthalpy before melting of the four
systems is identical. A closer investigation of the systems’
behavior at low temperature shows that less stable systems (tP

TABLE I. Optimum set of parameters for all the structures after
minimization.

tP tI oI hP hcP

c (units of σu) 0.995 0.995 0.995 0.995 0.997
a (units of σu) 1.936 2.705 1.975 1.999 3.325
b (units of σu) 1.936 2.705 3.420 1.999 3.325
σ (units of σu) 1.875 1.862 1.888 1.895 1.852
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Perfect crystal melting

FIG. 4. Thermogram starting from perfect crystal for tP, tI, oI,
and hP structures. Only the enthalpy for the temperature ranging
from T = 2.5 to 4εu/kB is plotted.

and tI) transform into more stable structures closer to hP or
oI. This can be understood noticing that all σ parameters are
very close (see Table I) whereas the energy of the oI and hP
structure is much more favorable, even for the σ parameters
optimized for tI and tP structures.

The melting temperature is around 3εu/kB for the most
stable systems (oI and hP). Logically, systems with tI and
tP parameters show lower melting points. An estimation of
melting temperature Tmelt and enthalpy �Hmelt for all systems
is given in Table II. The melting temperature is estimated by
the inflection point along the enthalpy variation. The melting
enthalpy is estimated by the enthalpy jump between the two
enthalpy asymptotes before and after the crystal melting point.
Note that the melting enthalpy is approximately the same for
all systems.

C. Isothermal crystallization

1. Crystallization

In this section, we test the ability of these systems to
crystallize.

Before cooling the polymer melts obtained by the RLP
algorithm, the system has to be equilibrated. Figure 5 shows
the mean square internal distance (MSID) [69] for the oI pa-
rameters (see Table I) after long relaxation at T = 4 εu/kB . The
MSID(n) is the average squared distance between monomers j

and j + n of the same chain. Note that for all the structures, the
MSID stabilizes after about 104τu. It is worth noticing that the
plateau values obtained for large n are much higher compared
to the “classical soft chains” MSID published by Auhl et al.
[69] where σ = 1σu and ε = 1εu. This was an expected result
as a specific σ parameter (higher than 1) leads indirectly to

TABLE II. Estimation of enthalpy �Hmelt and temperature Tmelt

of melting for the four investigated systems.

tP tI oI hP

�Hmelt (units of εu) 1.9 1.9 1.9 2.0
Tmelt (units of εu/kB ) 2.9 2.9 3.1 3.1
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FIG. 5. Evolution and convergence over time of mean square
internal distances of polymer melts for the oI parameters (see Table I).
The colors blue, red, yellow, purple, green, and cyan from bottom
to top, respectively, correspond to the relaxation time 2.5 × 103τu,
3.5 × 103τu, 4.5 × 103τu, 5 × 103τu, 2.5 × 104τu, and 1.25 ×
105τu. The dashed line shows the mean square internal distances for
the “classical soft chain” parameters used by Auhl et al. [69] for
σ = 1σu and ε = 1εu.

stiffen the chain. Indeed, the Lennard-Jones potential has no
effect on the first neighbor whereas it can be in interaction with
the following neighbors. When considering three successive
beads in the same chain, as σ is close to 2σu, the third bead
(second neighbor) should be at a distance of about 2σu from
the first bead and then three beads should be aligned. It is
then clear that the use of these specific values of σ favors the
crystallization as found when scanning the energy landscape in
a (σ , a/c) space. This simple Lennard-Jones potential acts as
an angular potential that helps at aligning the beads in a chain.
From a computation time point of view, it is worth noticing that
this method is performing as a single Lennard-Jones potential
allowing both the chain alignment and interchain distance that
prohibits cubic lattices.

During the cooling stage of the resulting equilibrated
polymer melts from T = 3.3 to 2.3εu/kB , the enthalpy varies
linearly with time, see Fig. 6, which indicates a negligible
crystallization. During the isothermal plateau at 2.3εu/kB , after
an incubation time of about 5 × 104τu, crystallization starts
and the enthalpy follows a classical sigmoidal curve for oI
and hP parameters; see Fig. 6. No crystallization is observed
for tP parameters. An estimation of crystallization enthalpy
is given in Table III. After about 4 × 105τu, the dynamics is
extremely slow, probably due to (i) in the amorphous phase,
the presence of both crystallite and residual entanglements
that prevent the nucleation of new crystallites; (ii) existing

TABLE III. Estimation of enthalpy of melting �Hmelt and
crystallization �Hcrys and temperature of melting Tmelt for oI, hP,
and tP systems.

oI hP tP

�Hcrys (units of εu) –1.1 –1.0 No
�Hmelt (units of εu) 1.5 1.4 No
Tmelt (units of εu/kB ) 2.9 2.8 No

FIG. 6. Thermogram (T = 3.3 to 2.3εu/kB , isothermal stage of
4.5 × 105τu, then T = 2.3 to T = 4εu/kB ) starting from equili-
brated liquid phase for body-centered orthorhombic (oI), hexagonal
primitive (hP), and simple tetragonal (tP) parameters.

crystals that impinge on each other. The obtained structure is
then reheated until melting, which occurs at 2.9 and 2.8εu/kB

for, respectively, oI and hP parameters; see Table III. Note
that both systems exhibit the same behavior. In addition, the
relatively high melting temperature and the significant melting
enthalpy, as well as the continuous decrease of enthalpy during
crystallization are strong evidence of the thermodynamic
stability of the crystal phase for all studied systems.

2. Crystallinity

In order to quantify the crystallinity as well as the size
distribution of crystallites one can use the nematic tensor and
deduce an order parameter [17]. Here we have used the same
physical ideas but with an algorithm based on hierarchical
clustering [70] which can be employed as an optimized cluster
analysis algorithm for determining phase size distribution
in a matrix. This algorithm seeks to build a hierarchy of
clusters and the agglomerative strategy has been used. It is
a bottom-up approach: each local misorientation starts in its
own cluster and several clusters are merged as one moves up
the tree structure. The misorientation of the polymer chains is
evaluated as follows: neighboring atoms i and j belong to the
same cluster, or crystallite, if their misorientation is lower than
0.1 (approximately 5◦). The misorientation between atoms i

and j is defined as2

�O(i,j ) = min[‖O(i) + O(j )‖,‖O(i) − O(j )‖], (3)

where O(n) is a unit vector giving the chain orientation at
the location of the nth atom inside a chain with respect to its
covalent FENE bonded neighbors:

O(n) = rn+1 − rn−1

‖rn+1 − rn−1‖ , (4)

2The min operator accounts for the case where two orientation
vectors are well aligned but pointing to opposite directions.
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FIG. 7. Crystallinity evolution during 4.5 × 105τu at T =
2.3 εu/kB for body-centered orthorhombic (oI) and hexagonal
primitive (hP) parameters.

where rn is the position of the nth atom inside a chain. The
orientation of the chains’ ends is set at the one of their first
covalent FENE bonded neighbors.

The crystallinity is defined as the ratio of the number
of beads belonging to a crystallite over the total number of
beads. We plot the crystallinity during the isothermal plateau
at T = 2.3εu/kB in Fig. 7. At the end of the isothermal
treatment, crystallinity reaches 65%. This value is comparable
to the maximal crystallinity (about 80%) of real entangled
polymers after long thermal treatment. However, our model
crystallizes remarkably well taking into account the relative
short simulation time. This is not surprising considering the
optimization of the Lennard-Jones σ parameter performed
before.

3. Crystallography of crystallites

The radial distribution function (RDF) is a powerful tool
for analyzing local ordering. For the sake of comparison, we
plot the RDFs of all optimized perfect structures (given in
Table I) in Fig. 8. First, peaks close to multiples of FENE
bond length correspond to successive intrachain neighbors,
which is the signature of aligned chains (the peak at r = 1σu

is not shown in Fig. 8). The interchain peaks are very different
for all structures, which is convenient for distinguishing
them. However, the two structures, hP and oI, corresponding
to the most favorable structures and to the only ones that
crystallized during isothermal treatment, often present similar
RDF signatures (see double peaks in the first two insets of
Fig. 8). This highlights the similarity of these structures.
Indeed, when moving down the central atom of the oI structure
of 1/2c, the hP structure is obtained. Nonetheless, the oI
structure presents additional isolated peaks and only hP and
tI structures do not show any peak between 2 and 2.2σu (see
insets of Fig. 8).

At the end of the isothermal of the thermal treatments
with optimized oI and hP σ parameters, the systems have
been minimized with a conjugate gradient algorithm and
the crystalline zones have been extracted with the algorithm
explained before. The radial distribution functions of these
crystalline zones are presented in Fig. 9 and can help us
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FIG. 8. Radial distribution function of perfect crystal for all
optimized perfect structures (given in Table I). The colors blue, red,
yellow, and purple associated with the ends of peaks’ circle, square,
cross, and point, respectively, correspond to the oI, hP, tI, and tP
structures. In the insets, a more detailed description of RDF around
2 σu for oI, hP, tI, and tP structures (corresponding to the first nearest
neighbors) is given.

to determine the crystal structures that appear (the peak at
r = 1σu is not shown in Fig. 9).

The two distributions for oI and hP structure are very similar
which is consistent with the thermogram as well as the energy
valley presented in Fig. 3. They exhibit only a few peaks of
weak intensity indicating that these structures contain defects.
We observe all the intrachain distances for integer values of r

and only two broad peaks at around 2.1σu and 3.7σu, which are
features of interchain distances. Now, focusing on these two
interchain peaks, one can see in the left inset of Fig. 9 that in
the range 2 − 2.2σu only oI and tP perfect structures present a
peak and in the right inset that in the range 3.5 − 3.8σu, tP, hP
and oI are all represented. Considering the top view snapshot
of the crystal zones [see Fig. 11(b)] one can clearly guess oI
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FIG. 9. Radial distribution function of crystals after quenching at
T = 2.3εu/kB and 4.5 × 105τu for oI (blue line) and hP (dotted red
line) structures. The two distributions are very similar. The vertical
lines correspond to the radial distribution function of a perfect crystal
for oI (in blue with circle ends), hP (in red with square ends), and tP
(in purple with point ends) as shown in Fig. 8. The two distributions
are very similar. In the insets, a more detailed description of the radial
distribution function around 2 σu is given.
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or hP structure but not tP structure as no square pattern can be
seen, so we can eliminate it. Note that from the inspection of
Fig. 11(b) we infer values of the lattice parameters a and b are
very close to the values found from the static analysis of Sec. II
for the oI structure. Finally, the peak around 2.1σu, which
ensures the oI structure in crystallites, and the fact that only a
few peaks appear in these radial distributions, is probably due
to the fact that the observed structure is a mix of oI and hP that
breaks a lot of symmetries leading to the observed result. This
result likely implies that the sliding of the chains is relatively
easy along the axis of the chain. Note that the same thermal
treatment for tP and tI σ parameters with smaller temperature
also yields crystallization. The RDFs so obtained display a
behavior suggesting a mix of oI and hP crystallites. This result
is reasonable as for the perfect crystal structures oI and hP, the
energy per atom is nearly the same (see Fig. 3). In fact, the
transition from oI into hP consists only in a shearing of half of
theFENE bond distance in the chain direction which requires a
very small amount of energy (evaluated to only about 0.001εu).

4. Crystallite shape and chain topology

Using the above-described procedure, the crystallites have
been detected at different time steps at T = 2.3 εu/kB . During
the first steps, few nuclei appear and disappear, as they are
unstable (see small orange regions in the first snapshot of
Fig. 10). Then a very small number of nuclei reach the
critical size so that they can grow (see the second snapshot
of Fig. 10). At the end of the simulation for the oI parameters,
only five independent crystallites have grown and the system
reaches about 65% of crystallinity (see the third snapshot of
Fig. 10).

The nucleus is formed after a local reorganization of a
small number of chains leading to few segments aligned in the
chain direction. Then we can see a relatively rapid growth in
the direction perpendicular to the chain direction, whereas
the growth in the chain direction is relatively limited, as
depicted in Fig. 11 for the largest crystallite. This feature
is consistent with what is observed experimentally for the
lamellar semicrystalline organization. These results are also
consistent with the previous MD simulations [20,54]. At the
end of simulation, the largest crystallite is more than three
times longer than thick; see Fig. 11. One can notice too that
the direction of the crystallites is not correlated which implies
that the amorphous phase is isotropic.

Concerning the amorphous phase, it has been checked that
nearly all the chains are linked to at least one crystallite.
Some chains are folded, and some are pending, loop, or tie
chains as one can see in Fig. 12. For example, in the largest
crystal, we count 1386 loops, 264 folding, 1583 pending,
and 850 tie chains for 3814 pieces of chain in the crystal.
These chain topologies are similar to the ones found in real
semicrystalline polymers. For perspective, we will study the
statistics for all these topologies for different time-temperature
protocols.

Additional isothermal crystallization tests have been per-
formed at lower temperatures (2.2; 2.1; 2.0εu/kB). As ex-
pected, the size distribution of the crystallites is shifted towards
lower values as the temperature is lower, but the crystallinity
remains nearly constant. These results are also compatible with

FIG. 10. Crystal nucleation and growth for the oI system during
the isothermal treatment at T = 2.3εu/kB (from top to bottom). In
blue is the amorphous phase, and in orange the crystal phase.
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FIG. 11. (a) Side and (b) top view of the largest crystal with
oI parameters. (c) Size of the same crystal; D the thickness and
L = (L1 + L2)/2 the average width, during its growth.

thermodynamic considerations. At T = 2.0 εu/kB the lamellar
structure is essentially lost which would correspond for a real
polymer to a strong quench.

IV. CONCLUSION

In this paper, we have used a simple coarse-grained model
to analyze the microstructural properties of semicrystalline
polymers. In this model, the monomer bonds inside the
chains are described by a FENE potential, whereas the
pair interactions are described by a Lennard-Jones potential
without any angular potential term. By modifying the σ value
of the Lennard-Jones potential, and using an energetic analysis,
it has been possible to show that two different structures,
hexagonal primitive (hP) and body-centered orthorhombic
(oI) show nearly the same stability. These structures need
a σ parameter close to 2 σu which tends to align three
successive beads in a chain, mimicking the angular potential.
It is worth noticing that every σ parameter used for a given

FIG. 12. Cross section of two close crystals with some examples
of classical type of chains detected in semicrystal: folded, loop, tie
and cilia (in blue). Here only the amorphous phase of classical type
of selected chains is shown to facilitate reading of the figure. This
structure was obtained at T = 2.3 εu/kB after 4.5 × 105τu.

FENE Lennard-Jones system induces an equivalent angular
potential corresponding to a more folded chain. As an example,
when using σ = 1σu the local equilibrium for three successive
beads in a chain is obtained for an equilateral triangle. Our
model does not allow cubic symmetry, as the Lennard-Jones
equilibrium distance is significantly different from the distance
between two successive beads in a chain. This is realistic from
the physical point of view as the distance between two chains
is always significantly different from the distance between two
monomers in the same chain for the real polymers. The two
obtained structures (oI and hP) are similar and the system can
evolve from one to the other by a slight shearing in the chain
direction.

Starting with an equilibrated polymer liquid, we have
shown that lamellar crystallites can be obtained quickly
when choosing an optimized crystallization temperature. In
this condition, these systems remarkably mimic the chain
topology in semicrystalline polymers. Indeed, folded chains
and loop chains as well as tie chains have been formed during
the crystallization. The crystallinity of about 60%–70% is
also compatible with typical semicrystalline polymers (e.g.,
polyolefin, polyamides, polyesters, etc.). In conclusion, using
a simple model with only Lennard-Jones and FENE potential,
it has been possible to reproduce the six points mentioned
in the Introduction that are required to mimic satisfactorily
a semicrystalline microstructure. It is a tool that is adapted
to analyze the crystallization phenomenon and to study the
general features of semicrystalline microstructures like the
topology of amorphous chains, e.g., the probability to form a
tie chain or a loop chain.
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