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A B S T R A C T

The low density (smaller than 10% of the bulk density) and the nanostructured porosity of silica aerogels provide
their extremely low thermal conductivities but also impact their poor mechanical properties. Atomic scale si-
mulation is the appropriate tool to predict the thermal and mechanical properties of such materials. For such
simulations, the interatomic potential should be carefully chosen to ensure result validity but also reasonable
computational times. A truncated BKS potential has been used for aerogels as it fairly reproduces the nanos-
tructure. It allows reducing the computational time by a 3000 gain factor on the CPU time per atom per step
compared to the original BKS interatomic potential while predicting correctly the mechanical properties.
However, when it comes to skeletal thermal conductivity of nanoporous silica, the associated computation times
are too large for a representative volume. This is due to the low thermal diffusivity of the material. Here, a new
method that takes advantage of the amorphous structure of silica and the diffusive nature of phonon heat
transfer at the scale of an aerogel aggregate is proposed. The time dependent temperature profile in the system
obtained from Non-Equilibrium Molecular Dynamics simulations is compared to the classical solution of the
thermal diffusion equation and an identification procedure is used to determine the thermal conductivity of
silica aerogels.

1. Introduction

Silica aerogels are highly porous materials (more than 90% por-
osity) with pore size distribution of the order of a few nanometers. Such
a size gives silica aerogels extremely low values of thermal con-
ductivity, which is interesting if they are used as high-performance
thermal insulators. However, these properties are obtained at the ex-
pense of their mechanical properties. Due to their nanostructure, the
understanding and the prediction of their properties require atomic
scale simulations. As silica aerogels are a porous heterogeneous mate-
rial, the representative volume of the matter that has to be considered
to predict its properties should contain several millions of atoms. With
such a number of atoms, molecular dynamics simulations remain ap-
propriate. However, the choice of an interatomic potential is challen-
ging since the computational time has to be minimized.

Silica is a polar material, each atom thus carries an equivalent
charge, inducing long range Coulombic interactions. Those have to be
accounted for to calculate interatomic forces. Electrostatic forces have
long-range interactions, which are costly in term of computation time.

Using a BKS potential [1], Rajappa et al. [2] have shown that the
contribution of long-range Coulomb interactions to the total energy is
lower for the amorphous phase than for the crystalline phase at the
same density. This result is coherent with the previous work done of
Carré et al. [3] who proposed a BKS potential with truncated coulomb
interactions to successfully predict the static and dynamic properties of
bulk silica. Recently, Gonçalves et al. [4] investigated the properties of
(SiO2)n clusters and silica aggregates. For small aggregates of silica, the
truncated BKS potential leads to the same structural properties and
surface energies as compared to the original BKS potential. This means
that significant reduction of computation time (evaluated to a gain
factor of 3000 on the CPU time per atom per time-step) is possible even
when the ratio between the surface to the volume ratio of material
increases drastically as for silica aerogels. Gonçalves et al. [5,6] further
used the truncated BKS potential to generate realistic silica aerogel
structures. They have shown that the representative volume that has to
be used to predict reliable mechanical properties of such material is of
the order of 803 nm3. This is much larger than the maximum volume
(203 nm3) previously reached to predict mechanical behavior of silica
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aerogel from molecular dynamics simulations [7–9].
Heat transfer in silica aerogel is a combination of radiative and

conductive heat transfer, both of which are coupled. Coquart et al. [10]
and Wei et al. [11] predicted the equivalent thermal conductivity of
aerogels, solving the coupled radiative transfer and conduction heat
transfer equations. Coquart et al. [10] assumed that aerogels are made
of a net of connected silica spheres, which diameter varies between 5
and 10 nm and they accounted for a variation of the thermal con-
ductivity with the sphere diameter. This is not coherent with experi-
mental observation [12] showing that silica aerogels may be considered
as (SiO2)n clusters connected via nanometric SiO2 ligaments. Several
authors have already used molecular dynamics simulations to predict
the thermal conductivity of silica aerogel [9,13–16]. In these studies,
due to computation time, the volume of the systems was smaller than
203 nm3 and the minimum density is higher than the typical density of
silica aerogels (around 70− 250kg. m−3). Thus these system are not
large enough to accurately describe the typical pore size distribution
(centered on 10 nm) observed experimentally [12,17,18]. Truncated
BKS potential proposed by Carré et al. [3] could open new avenue to
calculate silica aerogel thermal conductivity at a reasonable cost. Al-
though if this interatomic potential leads to appropriate surface prop-
erties [4], nanoporous silica aerogel structures and pore size distribu-
tion [5,6], it does not warrant that the value of the thermal conductivity
is reliable. In addition, in order to calculate the thermal conductivity of
the silica aerogels the same conclusion could be made as for the me-
chanical properties, where it is necessary to study a sufficiently re-
presentative volume close to 1003nm3.

Two methods based on molecular dynamics simulations are widely
used to determine the thermal conductivity from molecular dynamics
simulations [19]: Equilibrium Molecular Dynamics (EMD) and Non-
Equilibrium Molecular Dynamics (NEMD). In EMD simulations, the
instantaneous variation of the heat flux in a system at equilibrium is
calculated; the thermal conductivity is then extracted thanks to the
Green Kubo Formulae [20–23]. NEMD simulations are equivalent to
well-known guarded hot plate experiments. It consists in simulating
heat transfer in one direction of space by imposing a temperature dif-
ference between a hot zone and a cold zone. The technique to maintain
the constant temperature in the hot and cold zones depends on the si-
mulation strategy. Either the heat flux between the hot and cold zone is
imposed [24–26], or the hot and cold zones are thermostated [27–30].
It has been shown by several authors that the two methods give con-
sistent results [31–34]. EMD exhibits larger uncertainties than NEMD
since it requires a larger number of time steps to calculate an accurate
correlation function of the instantaneous heat flux. Moreover, it appears
that when the system is not homogeneous, then significant differences
may appear [35]. This is because the EMD method is based on the
Green Kubo formula, which is only valid for homogeneous systems. In
this study the NEMD method, detailed in section II.C.1., is used to de-
termine the thermal conductivity of silica aerogels.

The duration of NEMD simulations (number of time steps) and thus
the computation time is governed by the characteristic time, τ, to reach
the steady state for heat transfer. To evaluate τ, we consider a solid
system made of a continuous material. The system is defined by its
volume, V, which a characteristic length, l, a specific heat, c, a density, ρ
and its thermal conductivity, λ. If the material is opaque (no radiative
heat transfer) and if l is much larger than the phonon mean free path of
the material Λ, then the Fourier's law applies to describe heat transfer
within this system. If the system, initially at a temperature Ti, is placed
in a heat source at temperature TM then the temperature of the system
will tend towards the temperature of the medium. The duration of the
transient state is proportional to the characteristic time

=τ ρcl λ/2

For the silica aerogel systems studied here, the density varies be-
tween 2255 kg. m−3 (dense silica) and 250 kg. m−3 (silica aerogel
which porosity is about 90%), and the characteristic length between 20

nm and 90 nm. At ambient temperature, the specific heat c is equal to
720 J. kg−1. K−1. However, Molecular Dynamics (MD) simulations are
based on the Newton equation and there is no quantification of energy,
so whatever the temperature level, the specific heat of each atom is 3kb
(with kb the Boltzmann constant), which is equivalent to a specific heat
of 1240 J. kg−1. K−1. The thermal conductivity is approximately 1.5
Wm−1. K−1 for dense silica and we expect that it decreases for silica
aerogels down to values of the order of 0.05 W. m−1. K−1 [13–16].
Using these orders of magnitude, we may expect simulation durations
should be performed within 10 to 100 ns. This would lead to prohibitive
computation times that would prevent a large number of systems of
being tested especially those close to 1003nm3 in size.

A new simulation strategy to optimize the computational time and
extract the value of the thermal conductivity from NEMD simulations
with large volumes of nanoporous silica has been developed and is
described in section 2. This method is used to study the minimum size
of the volume of silica aerogel that has to be considered to predict the
thermal conductivity of silica aerogel which density is 250 kg. m−3. It is
also used to assess the relationship between the silica aerogel density
and its thermal conductivity. Results are compared to previous theo-
retical predictions and experimental values in section 3.

2. Models and methods

2.1. Simulation strategy

Considering that silica aerogel has an amorphous structure, the
phonon mean free path is of the same order of magnitude as the atomic
distances and heat transfer through silica is diffused. Thus, during the
transient state, the temperature profile in the system obtained with
NEMD simulations should be the same than in an equivalent system
made of a continuous material of the same geometry and thermal
properties than the system described at the atomic system. To optimize
the computational time, a three steps simulation strategy to calculate
the thermal conductivity of silica aerogels has been developed here: (i)
The evolution of temperature profiles during the transient state is cal-
culated by NEMD from silica aerogel simulation boxes. (ii) The evolu-
tion of the temperature profile is also calculated by solving the one
dimension second order heat transfer differential equation (HTDE)
based on a guess of thermal conductivity. (iii) The evolutions of these
two temperature profiles are then compared in order to extract a new
value for thermal conductivity λ by identification using a least mean
square algorithm. Steps (ii) and (iii) are thus repeated until a satisfac-
tory convergence for thermal conductivity is achieved. Details on these
different steps are given below.

We start from cubic simulation boxes of nanoporous silica of volume
L3 with a prescribed density and equilibrated at 300K. A given energy
quantity E is removed from the cold zone and given to the hot zone at
each time step using a velocity rescaled technic, see Fig. 1a. As periodic
conditions are used, to avoid direct heat transfer from the hot to the
cold zones, atoms have been fixed between these two zones. Thus, heat
transfer may only occur between the two zones through the silica
aerogel. The temperature profiles Ta(xi, tj) are stored in regularly spaced
slices at positions xi (the middle of each slice i) of 4 angstrom thickness
and at different times tj. The value of the energy quantity E and the
number of time steps has to be adapted for each system size and density
to ensure both a large enough temperature gradient compared to tem-
perature fluctuations and a good convergence.

(i) The temperature profiles Ts(xi, tj) of a 1D system of length L initially
at temperature Ti(x, 0)= 300K (see Fig. 1b) is calculated at the same
locations and times than for the NEMD simulation, solving the
second order heat transfer differential equation (HTDE):

∂
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To reproduce the same condition of heat transfer than for the MD
simulations, the heat flux φ= E/(L2Δt), with Δt the time step used in
MD simulation, is imposed on both sides of the system:

= ∀ ∂
∂

=x L t λ T x t
t

φ{0, }, : ( , )s

At the first time this step, a guess of the thermal conductivity λ is
used ranging between 1.5 Wm−1K−1 and 0.05 Wm−1K−1.

(ii) Using a least mean square algorithm, a new value of the thermal
conductivity is calculated by minimizing the functional

∑ ∑= −
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We observed that the temperature field calculated with MD simu-
lations is submitted to fluctuations, σ T T N( )~ /a with N the number of
atoms and T the temperature level. This is due to the fact that the
number of atoms is relatively small. These fluctuations inhibit the
functional F to converge towards zero. The variation of the thermal
conductivity between two iterations should decrease towards zero if
there were no temperature fluctuations. Due to temperature fluctua-
tions, when the iteration number is large enough, the thermal con-
ductivity oscillates around a mean value with a relative variation of less
than 1% which is the chosen convergence criterion. The quality of the
results may be checked by looking at the mean deviation D between the
temperature calculated using the HTDE and the one obtained from MD
simulation. The mean deviation is divided by the mean value of the
temperature fluctuation σ(Ta) for the interpretation:
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where ni and nj are the number of slices and the number of consecutive
time steps used for the summation average at the time tj, respectively.
After convergence, D should be almost equal unity. Values of D much

smaller than unity means that the numerical solution of the HTDE gives
almost the same results than MD simulations despite the temperature
fluctuations, which is not physical. This might happen if the number of
times used for the comparison is too small. Values of D much larger
than unity means that the numerical solution of HTDE differs sig-
nificantly from MD simulations. In that case, the two models might
differ physically.

In step (i) and (ii), the initial temperature is chosen equal to 300K.
However, as already stated, MD only solves the classical equation of
Newton and no quantification of energy is accounted for. So, the
comparison of MD results for the thermal conductivity is theoretically
reliable (if the interatomic potential is accurate) for temperatures
higher than the Debye temperature. In our case, our aim is to compare
thermal conductivity values for different system sizes and densities.
Qualitatively, the choice of the temperature range is not important.
Choosing a higher temperature range would have resulted in higher
temperature fluctuations. The ambient temperature offers a good
compromise between the temperature gradient and temperature fluc-
tuations.

2.2. Interatomic potential and boxes preparation

In this study, all MD simulations are performed using the Wolf BKS
potential (van Beest, Kramer and van Santen), proposed by Carré et al.
[3,36], which mainly differs from the original BKS potential by the
introduction of a cut-off on Coulombic long-range interactions (shifted
Wolf method [37]) and ensuring the continuity of both the potential
and the force at the cut-off radius as proposed by Fennell et al. [38].
Fennell et al. [38] have shown very good agreement between this
method and the full Ewald summation used for the original BKS po-
tential. In a previous study [4], we confirmed the transferability of the
potential of Carré et al. [3] for reproducing silica surface properties.
The gain in computation time obtained by the truncation of Coulombic
interactions opens the possibility to generate sufficiently large volumes
of silica aerogel to account for the pore size distribution observed ex-
perimentally [5,6]. Further, Carré et al. [3] showed that the vibrational
density of state is well reproduced in comparison with the original BKS.
Moreover, considering the large surface to volume ratio of highly
porous materials such as silica aerogels, it is critical that the interatomic
potential be able to reproduce the structure and energy of amorphous
silica surfaces. Both truncated and original BKS potentials have been
extensively used to study the surface properties of amorphous silica
[4,39,40]. Those studies suggest that the BKS potential is a reliable
choice to investigate thermal properties of highly porous materials.

The Wolf BKS potential, proposed by Carré et al. [3], writes:

⎜ ⎟

=

+ ⎡

⎣
⎢ − − ⎛

⎝
− ⎞

⎠

⎤

⎦
⎥

−

− −

r q q e W r G r

A e
C
r

A e
C
r

G r

Φ ( ) ( ) ( )

( )

αβ
W BKS

α β w w

αβ
r

ρ αβ
αβ

r
ρ αβ

c sh
sh

2

6
,

6
αβ

c sh
αβ
,

where

⎜ ⎟= ⎛
⎝

− ⎞
⎠

+
−

W r
r r

r r
r

( ) 1 1 ,w
c w

c w

c w,

,

,
2

=
−

−G r e( )w

γ

r r( )
w

c w

2

,
2

=
−

−G r e( )sh

γ

r r( )
sh

c sh

2

,
2

α, β stand for Silicon or Oxygen and e is the elementary charge.
Effective charge values, qα, qβ, and parameters, Aαβ, ραβ and Cαβ can be
found in [1]. The expressionWw(r) introduces a finite distance cut-off rc,
w on the coulombic interactions and it ensures the continuity of both the
potential and the forces at r= rc, w [37,38]. Gw(r) and Gsh(r) functions
are introduced to smooth interactions at the cut-off distance rc, sh and rc,

Fig. 1. Configuration for a) the NEMD simulations and for b) the classical 1D
transient simulation of heat transfer in a homogeneous continuous medium.
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w. Here, =r A10.17 ̇c w, and =r A5.5 ̇c sh, and the widths of the smoothing
function are = =γ γ A0.5 ̇

w sh [36]. The original BKS potential, which
pertains to the Coulomb-Buckingham type, does not tend to positive
infinity as r tends to zero. Thus, atoms may approach too close from
each other if the temperature or the pressure of the system are too high.
This may induce chaotic dynamics. A solution proposed by Shcheblanov
et al. [36], and adopted here, is to add a strong repulsive term for short
range interactions:

⎜ ⎟= ⎛
⎝

⎞
⎠

+ +r
D

r
E r FΦ ( )αβ

rep αβ
αβ αβ

12

where Dαβ, Eαβ and Fαβ parameters are listed in [36].
Simulations are performed with the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [41]. The integration of the
equations of motion is achieved using a velocity-Verlet algorithm and a
0.25 fs timestep needed for stability. Temperature and pressure are
respectively maintained by a Langevin thermostat and a Berendsen
barostat.

Dense amorphous silica samples are prepared from melting of β-
cristobalite cubic structures of 52728 atoms at 5000 K. The resulting
silica liquid is then quenched to 300 K at 4.7× 1012K. s−1. Simulations
boxes are equilibrated during 200 ps in the NPT ensemble at 300 K and
zero stress. This box is then replicated in the three directions of space in
order to get the required system size. It is then equilibrated during 1ns
in the NPT ensemble at 300 K and zero stress. This procedure is similar
to the “melt-quench-duplicate” procedure described in [42–44] and
used to create “big samples” of metallic glasses. Periodic boundary
conditions are used in all directions. The final amorphous silica box has
a density of 2255 ± 1 kg. m−3.

Silica aerogel simulations boxes are generated with Kieffer's method
[45] by isostatically and instantaneously stretching by approximately
10% by steps a dense amorphous silica box in all directions. Between
each stretch, a relaxation stage in the NPT ensemble is applied during
50 ps to maintain a 300 K temperature and a zero pressure. The
stretching/relaxation stages are repeated until the desired density is
reached. More details can be found in Gonçalves et al. [5]. With this
method and the truncated BKS interatomic potential, the pore size
distribution is around 10nm for a ρ=250 kg. m−3. This pore size is
comparable to the experimental values [12,17,18] as for commercial
silica aerogel obtained from sol-gel process [46] and leading to
monolith like aerogel particles or composite made of aerogels.

3. Results

3.1. Amorphous dense silica

The thermal conductivity of dense amorphous silica is calculated by
two methods: first by using classical NEMD simulations and second by
relying on the simulation strategy described in section II.A. The aim is
to validate our simulation strategy for a simple and well-known case of
dense amorphous silica.

Formally, in the classical NEMD simulation, the average tempera-
ture gradient ∂T/∂z of the linear temperature profile is determined for
the steady state conditions. The thermal conductivity is calculated from
the Fourier's law:

= −
∂ ∂

λ
φ

T z/

As the steady state has to be reached, the system size should not be
too large to minimize the computation time. However, the value of the
thermal conductivity is not reliable if the system size is too small. Thus,
several simulations for different system sizes are run. The inverse of the
thermal conductivity is plotted against the inverse of the system size to
extrapolate the value of the thermal conductivity for an infinite system
size. In our case, the optimum section of the system is 14.1×14.1 nm2

and the system length varied between 3.5 and 28.3 nm. The

temperature level is imposed in the hot and cold source using a tem-
perature rescale method, allowing the calculation of the heat flux ex-
changed between the sources. Fig. 2 shows the temperature profile in
the longest system. The duration of the simulation to reach the steady
state is 1.3 ns. In steady state, the heat flux flowing between the hot and
cold sources is equal to 3.3 GW. m−2. The temperature profile between
the sources is approximatively linear which means that the phonon
mean free path is much lower than the system size, as it should since the
structure is amorphous.

Fig. 3 shows the inverse of the thermal conductivity against the
inverse of the system size. The thermal conductivity increases when the
system length increases. Compared to previous calculations [13–15]
with the original BKS potential, our thermal conductivity values are
larger. This might be due to the choice of the system section of the
system which is larger than previous works. Indeed, the thermal con-
ductivity also varies when the section of the system increases. Thus, we
increased the section of our systems such that the value of the thermal
conductivity does not change significantly. The thermal conductivity
for an infinite length is obtained from the extrapolation of the linear
fitting of the points towards 1/L=0; it is equal to 2.4 ± 0.1 W. m−1.
K−1. Despite our values for each system length being larger than pre-
vious results, the extrapolated value for the infinite system length is of
the same order as the one obtained with the original BKS interatomic
potential. All these values are almost twice as large as the experimental
values (1.4 W. m−1. K−1). Indeed, Yeo et al. [15] also calculated the
thermal conductivity of dense silica aerogel using the Tersoff

Fig. 2. Temperature profile in steady state in a dense amorphous silica which
section is 14.1×14.1 nm2.
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Fig. 3. Inverse of the thermal conductivity function of the inverse of the system
size for dense silica.
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interatomic potential proposed by Munetoh et al. [47]. They obtained a
value of the thermal conductivity equal to 1.19 W. m−1. K−1. Actually,
the choice of an interatomic potential to study thermal properties is not
that straight. First MD simulations are classical simulations that do not
account for the energy quantification of the phonon. Second, the in-
teratomic potential should reproduce the harmonic (dispersion curves)
and anharmonic behavior (phonon relaxation time) of the material. So,
whatever the interatomic potential, MD simulations may result in over
or under-estimation of the thermal conductivity for temperatures lower
than the Debye temperature. So, as already discussed for the choice of
the interatomic potential, the optimization of computational time and
the ability of the BKS interatomic potential to reproduce the surface and
structural properties of silica aerogel confirm our interatomic potential
choice to investigate silica aerogel thermal properties. Since the bulk
thermal conductivity of silica aerogel obtained with the BKS intera-
tomic potential is not correct, only relative variations of the thermal
conductivity of silica aerogel from the bulk value will be considered.

The new methodology for the thermal conductivity prediction is
used for comparison with these first results. The system is a dense
amorphous silica prepared as mention in section II.B. To test the ability
of the method to tackle with large systems, the volume of amorphous
silica is set to 373nm3, containing approximately 3.3 million of atoms.
The initial temperature is equal to 300 K. The system is submitted to a
heat flux of 1.18 GW. m−2 during 0.78 ns on the opposite sides of the
sample in the x direction. With this value the temperature variation
between the hot and cold sources is around 18 K, which is one order of
magnitude larger than the temperature fluctuations (0.43 K).

Fig. 4 shows the variation of the thermal conductivity against the
simulation duration of the heat transfer. The thermal conductivity tends
to a limit value equal to 2.35W. m−1. K−1when the simulation duration
increases. This value is very close to the value obtained from the clas-
sical NEMD method. Fig. 5 compares the temperature profiles obtained
from the MD and HTDE simulations near the hot and cold sources. The
quality of the diffusive model in dense silica is good: we find that the
mean deviation D is almost equal to 1. This validates the new metho-
dology to determine the thermal conductivity from MD simulation for
amorphous material. It is thus used for silica aerogel in the remaining of
the paper.

As explained in Section 2.2, all big dense amorphous silica systems
are constructed by replications of a small dense amorphous silica con-
figuration which are then relaxed during 1 ns at 300 K and zero stress
before heat transfer simulation. After replications, the samples can be
annealed at high temperature in order to eliminate possible artifacts of
periodicity from replication [48]. In order to prove that our procedure
of replication without annealing have no influence on the thermal

conductivity, the dense amorphous silica system of dimension
14.1×14.1×28.3 nm3 obtained by replication has been annealed at
1000 K for 0.5 ns then quenched to 300 K at 4.7×1012K. s−1 and
relaxed for 0.5 ns. The thermal conductivity of this annealed system
obtained by NEMD simulation is 2.31W. m−1K−1 which is very close to
the one previously obtained without annealing 2.32 W. m−1K−1. This
confirms the reliability of our simulation strategy.

3.2. Silica aerogel

In previous studies, due to the used of the original BKS interatomic
potential, the maximum system size that was considered was 20 nm,
which is of the order of magnitude of the pore characteristic size in
silica aerogels. Moreover, the minimum value of the density (300 kg.m-3

in Yeo et al. [15]) is larger than the one investigate here (250 kg.m-3).
Thanks to the use of the truncated BKS interatomic potential and the
new simulation strategy to determine the thermal conductivity larger
systems may be considered. Our first aim is to study the influence of the
system size on the thermal conductivity of silica aerogel to look for the
system size that would lead to the thermal conductivity of the bulk
silica aerogel. Thus, using the Kieffer's method [45], seven aerogel
volumes, all with a density equal to ρ=250 kg. m−3, with different
volumes are generated, V=303, 403, 503, 603, 703, 803 and 903nm3. A
heat flux of ϕ=8.34, 6.57, 4.77, 4.38, 3.82, 4.08, and 4.09×107W.
m−2 is imposed on the opposite sides of the sample. This procedure is
repeated on all three directions (x, y or z) in order to induce a 1D
temperature field variation.

Results are detailed for the largest system (903nm3) first. As for the
dense silica, the thermal conductivity has been identified as a function
of the simulation duration (Fig. 6). The thermal conductivity also tends
towards a limit value after 2.6ns, a time smaller than the evaluated
characteristic time τ to reach the permanent regime larger than 10ns.
However, in this case, the mean temperature deviation D is not constant
and increases when the simulation duration increases (Fig. 6) and be-
comes larger than the temperature fluctuation of the MD simulation
(0.53 K). The comparison between temperatures obtained from MD and
HTDE simulations on Fig. 7 suggests that the two models (MD and
HTDE) differ slightly. This disagreement might be explained by the
small variation of the potential energy of the system during MD simu-
lation due to the relaxation of the system. This effect cannot be accu-
rately described in the HTDE but actually has a negligible influence on
the value of the thermal conductivity (see discussion in Appendix A).
Therefore, for all the systems considered hereafter, the value of the
thermal conductivity is determined with the same methodology than
for the dense silica.
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Fig. 4. Identified thermal conductivity of dense silica function of the simulation
duration.
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All the values of the thermal conductivities obtained for all the
system sizes and directions of heat transfer are gathered on Fig. 8. For
smaller systems, the values are quite different in the x, y and z direc-
tions while for large systems, this difference decreases and almost
vanishes. As the characteristic size of the pores is 10 nm then the ani-
sotropy of the thermal conductivity for the smaller systems is due to the

anisotropy of the geometry of the system. This anisotropy originates
from the pore coalescence during the negative pressure cycles applied
for the aerogel's generation process due to the very low target density.
For larger systems, the geometry becomes isotropic, so does the thermal
conductivity. This result is coherent with the one already shown by
Gonçalves et al. [5] for the elastic modulus.

These predicted values of the thermal conductivity of silica aerogel
might be quite different from the real one since, as discussed in the
previous section, the prediction for dense amorphous silica is an over-
estimation of the experimental value. Moreover, our silica aerogel
systems are quite different from real systems that have already been
experimentally characterized. Real systems exhibit a two-scale organi-
zation: the nanoscale that has the same geometric characteristic than
our silica aerogel and a larger scale due to the forming process of the
final insulators. However, in previous studies, it has been shown that
the macroscopic properties actually depend on the nanoscale. This is
the case for the variation of the elastic modulus and thermal con-
ductivity which depends on the system density [49,50]. Gonçalves et al.
[5] has also shown that the elastic modulus power law dependence has
the same exponent value as modeling or experimental studies [51–53].
So, the aim is to predict the density variation of the thermal con-
ductivity of silica aerogel, to be compared with the experimental one.

Eleven aerogel systems of different densities ρ=250, 280, 320,
375, 450, 530, 660, 780, 1050, 1590 and 2255 kg. m−3, with respec-
tively volume V=903, 743, 703, 683, 643, 603, 563, 533, 483, 423 and
373nm3, are generated. The number of atoms is almost the same for all
these systems. The absolute value of the heat flux imposed on each side
of the simulation boxes are respectively: ϕ=4.09, 3.81 3.82, 3.81,
3.90, 39.6, 40.9, 42.5, 46.2, 53.4 and 118.2× 107W. m−2. The heat
flux for systems with high density is higher in order to prevent that the
temperature fluctuations are of the same order as the temperature
difference imposed on each side of the simulation box. The variation of
the thermal conductivity is then plotted as a function of the system
density (Fig. 9). For each density, the values of the thermal con-
ductivities in the x, y and z directions are almost the same, indicating
that for each density, the system size is large enough to be considered
homogeneous. Also, the thermal conductivity clearly varies as a power
law function of the density:

=λ aρb

Our coefficient b=1.77 is much larger than the one predicted by
Ng and Yeo [14] (b=1.01), for a density range from ρ=320 to 990 kg.
m−3, but their system size was almost five time smaller than ours.
However, note that the system size has to be large enough to ensure that
the system is representative of bulk silica aerogel.

Fricke et al. [54] derived a model for the thermal conductivity of
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aerogels. Based on this model and the sound velocity measurements in
aerogels Gross et al. [55] and Hrubesh et al. [56] calculated a value of
b= 1.88. Thus, our value of b is in good agreement with this prediction.
This coefficient b has also already been experimentally determined by
Fricke et al. [57] and Jain et al. [58]. The reported experimental values
of b range between 1 and 1.65. In these two papers, it has been high-
lighted that b strongly depends on the elaboration process.

Another empirical model has been proposed by Emmerling et al.
[59]. It is based on the fractal dimension fD of silica aerogels. As fD is
around 2 for the density range of interest here (around 200 kg. m−3)
they determined a value b=1.5, which seems to be in good agreement
with experimental results [60]. However, for our silica aerogel systems,
fD varies when the density varies [5], the value of b should also varies
with the density. To summarize, the relative variation of the thermal
conductivity as a function of the density in our simulated silica aerogel
is in good agreement with previous results. However, the comparison
with experimental results is quite difficult since the interatomic po-
tential does not allow for the real complexity of chemical interactions
and chemical diversity to be reproduced.

4. Summary

The prediction of silica aerogel thermal conductivity is of great in-
terest for material engineering. Due to the nanostructure of silica
aerogel, the atomic description of the material is mandatory for the
conduction contribution to the thermal conductivity. Molecular
Dynamics simulation is an appropriate tool but the drawback of this
technique is the large computational time linked to the choice of the
interatomic potential and also due to the simulation strategy to predict
the thermal conductivity.

In this paper, the computational time is first significantly reduced
thanks to the use of the interatomic potential from Carré et al. [3]
which has already been evaluated for MD simulation of silica aerogel
mechanical properties [5,6]. Secondly, we took advantage of the dif-
fusive nature of heat transfer in silica aerogel to propose a new

methodology for the thermal conductivity prediction. It is based on the
comparison of the transient temperature field given by the MD simu-
lation and by the solution of the heat transfer diffusive equation. This
new methodology makes it possible to reduce the computing time from
above 10ns with classical NEMD to 2.6ns for our large systems of almost
903nm3.

The method has been validated by comparing the prediction of the
thermal conductivity of dense silica using classical NEMD and the
proposed methodology. It is then used to predict the thermal con-
ductivity of silica aerogels. The thermal conductivity of silica aerogels
has been determined as a function of the system size for a density of 250
kg.m−3. For such a density, the average pore size is 10 nm. The aniso-
tropy of the thermal conductivity due to the presence of pores in the
aerogel decreases when the system size increases and the system may be
considered isotropic when it reaches 90 nm. This is the first time such a
system size has been considered for heat transfer simulation.

The thermal conductivity of silica aerogel has also been calculated
as a function of the aerogel density. As expected, the thermal con-
ductivity exhibits a power law dependence with the density. The power
factor is in good agreement with the experimental results.

This new methodology to predict the thermal conductivity might be
used to study materials in which conduction heat transfer is diffusive
but which require the atomic description of large volume.
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Appendix A. Model difference between HTDE and MD simulations

For dense silica, the temperature fields calculated solving the HTDE (section 2.1) and Molecular Dynamics simulations match quite well (see
Fig. 5). Thus, the identification of the thermal conductivity is reliable. For silica aerogel, there is a difference between the HTDE solution and the MD
simulation: this is shown on Fig. 7 and moreover the mean deviation D is larger than 1 (Fig. 6). Thus, one has to discuss the reason of this difference.
To illustrate the discussion, the largest system (903nm3) with the lowest density (250 kg. m−3) is considered. First, it is important to understand the
origin of the difference between the temperature fields, since it might help to modify the model used to simulate heat transfer in the aerogel
considered as a continuous medium.

The main point is that the mean temperature of the system (so its kinetic energy) during the MD varies between 300.8 K and 302.1 K (Fig. A1).
This is not expected since during heat transfer simulation the same quantity of energy is given to the hot source and taken from the cold source of the
system (Fig. 1a); the mean temperature of the system must remain constant during all the simulation. We also noted that during the MD simulation,
the total energy is constant, which is coherent with the boundary condition for heat transfer simulation while the potential energy decreases (Fig.
A2) and the kinetic energy (so its temperature) increases. Thus, we think that the scenario that leads to the temperature increase is the following (Fig.
A3): during the simulation, the system experiences relaxations, giving rise to a decrease of potential energy by the value Er corresponding to a virtual
state of the system which correspond to the relaxed system. As the total energy of the system is constant and due to the equipartition theorem, the
energy Er due to the relaxation is given back to the system in the virtual state, half of it is transformed into kinetic energy (which is equivalent to a
temperature rise) and the other part into potential energy. So, between the initial state and the final state of the simulation, the kinetic energy
increases while the potential energy decreases. For the heat transfer model, this is equivalent to add a term source in the HTDE:

∂
∂

= ∂
∂

+ρc T x t
t

λ T x t
x

g( , ) ( , )s s
2

2

Using the time variation of the temperature and potential energy, it is possible to identified a source term function of time. To identify the
thermal conductivity, the only change to do in the methodology is to add the source term in the HTDE.
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Fig. A3. Principle of the energy variation during the transient NEMD simulation.
The results are shown on Fig. A4 and compared to the one obtained without the source term. Accounting for the source term do not change the

value of the thermal conductivity, but it decreases significantly the mean deviation D. However, D is still larger than 1. To our point of view, this is
due to the fact that in our model, the source term is homogeneous while in MD simulation, this source term is due to local relaxation. This is however
not possible to describe the spatial variation of the source term. So, there will always be a model difference between the HTDE and the MD
simulation. The Fig. A5 confirms this assumption: the new temperature histories near the heat sources with MD simulation and the solution of HTDE
with the source term exhibit a better agreement near the hot source and it seems that the agreement is less good near the cold source (see Fig. 7 for
the same comparison without the source term): due to the local nature of the source term it is not possible to have a perfect agreement between the
two solutions in the whole system.
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Fig. A4. Thermal conductivity and mean deviation D as a function of the simulation duration without (points and filled squares) or with (circles and empty squares)
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Fig. A5. Temperature history near the hot and cold sources. Comparison between MD results and the HTDE with source term.
As a conclusion, it is clear that the value of the thermal conductivity does not change if the term source is considered or not in the HTDE (several

tests have been done for other system sizes and density), thus the results for the thermal conductivity are all obtained solving eq. 1 of the paper
without the source term.
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