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A recently demonstrated aerodynamic levitation technique is used to perform contactless viscosity measure-
ments. Classical models dealing with free oscillations of droplets without gravity cannot correctly describe the
correspondence between damping coefficient and viscosity. An energetic approach taking into account the
shape of the drop, and the velocity field of the liquid inside the drop, is introduced, leading to good agreement
between experimental measurements and known viscosities of glycerol-water mixtures. Nonlinear effects are
also investigated and experimental results are compared with the theory of anharmonic oscillations.

PACS number!s": 47.27.Wg, 47.55.Dz, 47.20.Gv, 47.80.!v

I. INTRODUCTION

The gas-levitated droplet technique has been developed in
order to perform contactless processing and to improve the
homogeneity of glass #1,2$. More recently, it has been ex-
ploited to perform contactless measurement of physical prop-
erties of liquids !such as surface tension and viscosity
#3–5$". To study the solidification process of alloys, the ab-
sence of contact, which is a major source of heterogeneous
nucleation, allows in situ measurements of bulk viscosity and
surface tension.
Compared with the magnetic levitation technique, which

has been used to perform contactless measurement of surface
tension #6,7$, viscosity in microgravity #8$, density, and en-
thalpy #9$, the gas-film-levitation technique is suitable for
insulating liquid materials. Moreover, dissipation measure-
ments, even in a liquid metal drop, will hit the viscosity
parameter directly instead of a combination of viscosity and
Joule dissipation due to eddy currents #8$. In order to mea-
sure surface energy and viscosity of liquids, one can study
droplet oscillations. The response of the droplet triggered by
a given frequency exhibits a resonance. In earth’s gravita-
tional field, the position of the resonance peak is governed by
surface energy !restoring force" and density !inertial effect",
whereas the width of this peak is related to the dissipative
terms, namely, the viscosity of the liquid. In this paper, we
focus our attention on the determination of viscosity of an
oscillating droplet in an external gravitational field. We
stress the fact that what we are discussing here is the defor-
mation amplification of our droplet under vibrational excita-
tion of the setup. As mentioned in our previous paper #10$,
this is evocative of a Faraday instability.
Lamb #11$ !see also Ref. #12$" gave the resonance mode

frequencies f r and resonance peak width % f r for a free os-

cillating drop of volume V, radius R, surface energy & , den-
sity ' , and viscosity ( , in the absence of gravity. For the
mode l , he obtained

f r"!l ! l #1 "! l !2 "&/!3')V ", !1.1"

% f r"! l #1 "!2l !1 "(/!2)'R2".

Very few systematic experiments exist on the variation of
the oscillating modes under gravity with respect to volume or
nature of the liquid #3,4$. With the magnetic levitation tech-
nique, the effects of the magnetic and gravitational fields on
the oscillation frequencies have been calculated #13$ allow-
ing an accurate surface tension measurement #6,7$. However,
no explanation has been proposed for the effect of the gravi-
tational field on the width of the resonance peak. In the
present paper, the effect of gravity and gas flux on the equi-
librium shape is evaluated. The influence of the droplet
shape on the resonance frequency is investigated, taking into
account the real shape of the droplet instead of the ellipsoidal
approximation used in Ref. #4$. An energetic approach leads
to the interpretation of the viscous dissipation. For large ex-
citation amplitude, nonlinear effects, theoretically predicted
in Ref. #10$, are also investigated. Systematic experiments
with droplets of varying volume and viscosity are performed
and the results are compared with these simple analytical
models.

II. EXPERIMENTAL SETUP AND MATERIALS

The apparatus is schematically depicted in Fig. 1, and
described in detail in Ref. #4$. A liquid droplet stands on a
gas layer coming through a pressurized porous membrane
!diffuser". Only the l "2 mode !oscillation between probate
and oblate shapes" has been studied because of its relative
high oscillation amplitude.
The drop is excited through an electromagnetic vibrator*Electronic address: Michel.Perez@gpm2.inpg.fr
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providing vertical oscillation to the system !diffuser-drop".
Frequency and amplitude of the excitation are adjustable in a
wide range !from 1 to 100 Hz for the frequency and 0 to
100 (m for the amplitude". A video system allows drop
profile measurements with an accuracy of 10 (m. Scanning
in frequency gives the resonance peak. Temperature is mea-
sured by means of a thermocouple inserted in the diffuser.
In this work, experimental measurements have been per-

formed at room temperature (298$1 K) on drops of water-
glycerol mixtures with various fractions of glycerol !from
20% to 85%". The physical parameters for water and glyc-
erol are listed in Table I. The volume of the drop varies from
V"10 (l to V"100 (l. Some experiments were per-
formed on calibrated silicon oil (("10.1 mPa s, '
"900 kg/m3, &"0.017 J/m2 at 298 K" provided by
Brookfield Ltd.

III. EXPERIMENTAL RESULTS

The width of the resonance peak was measured at half
height. Its variation with the droplet volume is shown in Fig.
1. Equation !1.1" with no gravity effects is unable to describe
the results. As demonstrated in #4$, gravity effects on the
drop shape have to be taken into account, because the radius
of the droplet is close to the capillary length for water-
glycerol (lc"!&/'g"2.5 mm, g being the gravity accel-
eration".
A typical resonance peak is plotted in Fig. 2 for two dif-

ferent amplitudes of excitation. The small amplitude peak is
symmetrical and accurately fitted by a simple viscoelastic
model. However, if the excitation amplitude is too large, the
resonance peak starts to be distorted, leading to a hysteresis
in the amplitude-frequency diagram. This phenomenon is
characteristic of nonlinear effects associated with anharmo-
nicity. These first results underline the need for theoretical
approach better adapted to gas-film-levitated drop concern-
ing !a" the nonspherical equilibrium shape, !b" the resonance

frequency, !c" the resonance peak width, and !d" the effect of
excitation amplitude on the peak shape.

IV. EQUILIBRIUM SHAPE OF THE LEVITATED
DROPLET

A. Laplace equation

In order to understand the parameters influencing the
equilibrium shape, a comparison is made between the theo-
retical shape of a sessile drop with a 180° contact angle and
photography of the real shape.
The shape of a sessile drop with 180° contact angle de-

pends only on the surface tension & , the density ' of the
liquid, and the gravity g. At each point of the surface, the
Laplace equation has to be satisfied. Due to the revolution
symmetry axis, the Laplace equation is equivalent to !see
Ref. #14$"

d*

ds "#
sin *

X !
'g
&
Z!

2
rc
. !4.1"

* is the angle defined in Fig. 3, s is the curvilinear coor-
dinate, rc is the radius of curvature at the top of the drop, X
is the horizontal coordinate, and Z is the vertical coordinate.
The profile of the sessile drop is calculated by solving Eq.
!4.1" numerically at each point of the droplet surface and
adjusting rc to obtain the correct volume.
In Fig. 4, it can be observed that the real shape of the

levitated drop is almost exactly fitted by the shape of a 180°
contact angle sessile drop. The first consequence is that the
equilibrium shape of the drop depends only on the ratio
'g/& and is barely perturbed by the experimental conditions
!gas flux, diffuser". The second consequence is the possibil-
ity of measuring the ratio 'g/& and deducing the surface

FIG. 1. Width of the resonance peak of a 30% glycerol droplet
as a function of the volume: experiments !dots" and theory from Eq.
!1.1" !line".

TABLE I. Physical properties of water and glycerol at 298 K.

Viscosity Surface energy Density
!mPa s" (J m#2) (kg m#3)

Water 1 0.073 1000
Glycerol 1700 0.063 1273

FIG. 2. Resonance peak of a gas-levitated droplet for low !a"
and high !b" excitation amplitudes. Note the hysteretic behavior
present in !b".

FIG. 3. Geometrical definition for the profile description !see
Sec. IV": !a" profile solution of Laplace equation #Eq. !4.1"$ and !b"
profile described with the Archimedean arc #Eq. !4.2"$.
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tension, just by fitting the calculated profile with the real
profile, which is much more accurate than measuring a
sessile drop contact angle.

B. Variational approach with an Archimedean spiral arc

Although it is difficult to find an analytical solution of Eq.
!4.1", a numerical solution is not quite satisfactory. However,
it seems that a flattened Archimedean arc could describe ac-
curately the profile of the levitating drop. The equation of
such a profile would be

x!+""a+ cos+ ,
!4.2"

z!+""ba+ sin+ .

Parameter a describes the size and parameter b the flat-
tening of the shape. + varies from 0 to +0 !corresponding to
the top of the drop where dz/dx"0) !see Fig. 3". If a and b
are properly chosen, the Archimedean arc can fit the real
profile. At that point, a and b have no physical meaning,
which is not satisfactory. One would like to have an estima-
tion of these parameters as a function of the drop properties
& , ' , g, and V. The variational approach of Ref. #4$ devel-
oped with an ellipsoidal profile can be used with the more
realistic profile described by Eq. !4.2". The volume is given
by

V"!
0

+0
#x!+"#x!+0"$

2)ab#sin+!+ cos+$d+ .

!4.3"

V is kept constant so that the droplet shape depends only
on one parameter, chosen here to be b. The total energy of
the system at rest can be calculated as the sum of gravita-
tional potential and surface energy:

E"&S!'Vgzm . !4.4"

zm is the droplet center of mass, which is the solution of
the equation

!
0

+0
#z!+"#zm$#x!+"#x!+0"$

2)ab#sin+!+ cos+$d+

"0. !4.5"

The energy minimum corresponds to a stable equilibrium
position at b"beq . The same strongly asymmetric profile as
in Ref. #4$ is observed. For a given volume and a liquid of
known density and surface tension, the value of beq can be
calculated, leading to the determination of the equilibrium
droplet profile. Figure 4 compares the experimental profile,
the exact profile derived from the Laplace equation, and the
profile determined with the variational approach. The reason-
ably good agreement validates the variational approach.

V. RESONANCE FREQUENCY APPROXIMATION:
COMPARISON BETWEEN THE REAL
AND THE ELLIPSOIDAL SHAPE

Once the energetic profile is determined, the resonance
frequency is given by the stiffness of the energy curve, i.e.,
the second derivative of E. In the case of an ellipsoidal shape
#4$, the derivation parameter is obvious: the center of gravity
position. With such a geometry, this point corresponds to the
center of symmetry. The surface forces and the volume
forces can be assumed to be applied at that unique point.
However, in the case of a nonsymmetric shape, such as the
one induced by gravity, this reduction to a single resulting
force applied at the center of gravity is no longer possible.
Nevertheless, the resulting force is along the vertical axis.
The dynamics of the system will be approximated by the
dynamics of a specific point along the z axis whose position
between the two poles of the droplet will be chosen in order
to get the closest fit between calculated and experimental
frequencies. The aim of the present simplified model is to
predict the influence of the volume on the characteristics of
the resonance.
Figure 5 shows the resonance frequency as a function of

the droplet volume. Assuming either an ellipsoidal shape or
an approximation with Archimedean spirals leads to identical
results since the two curves are close and parallel. On this
basis, the droplet shape will be described as ellipsoidal in the
remaining part of this paper.

FIG. 4. Comparison between the experimental profile (%%%),
the profile solution of Laplace equation !gray line", and the profile
resulting from the variational approach using archimedian spiral
!black line".

FIG. 5. Comparison of the experimental results for the reso-
nance frequency with the estimation from variational approaches
using ellipsoidal !- - -", or Archimedean shapes !—". The solution
given by Eq. !1.1" is shown for comparison.
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VI. VISCOSITY APPROXIMATION: AN ENERGETIC
APPROACH

The width of the resonance peak is associated with the
dissipation processes occurring within the vibrating droplet.
The dissipated power will be described first in a purely phe-
nomenological manner using a viscoelastic model !A". A
more direct interpretation will be given thanks to an approxi-
mate solution of the Navier-Stokes equation for the fluid
flow in the droplet !B".

A. The viscoelastic model

For amplitude small enough to stay in the linear domain,
the vibrating droplet can be modeled by the classical vis-
coelastic harmonic oscillator, whose motion is governed by

R̈p!2,Ṙp!-0
2Rp"

F
M cos-t . !6.1"

This gives

Rp"Rp0
!%Rp cos!-t!.", !6.2"

%Rp"
F

2M-0!!-#-0"
2!,2

,

where Rp is the polar radius of the ellipsoid, M the mass of
the system, ,")% f r the dissipation coefficient, -0"2) f r
the resonance angular frequency, F the amplitude of the ex-
citation force, - the angular frequency of the excitation
force, Rp0

the polar radius at equilibrium introduced in Ref.
#4$, and %Rp the amplitude of the oscillations. This assump-
tion is supported by the excellent correlation between an
experimental resonance peak and Eq. !6.2" for small ampli-
tudes of excitations !see Fig. 2".
The dissipated viscous power Pv at the resonance fre-

quency is given by !see Ref. #16$"

/Pv0"M,-0
2%Rp

2 . !6.3"

B. The velocity field into the oscillating droplet

The displacement field of the liquid will be calculated
when the droplet’s north pole oscillates around its equilib-
rium position at the resonance frequency -0. Between an
oblate and a prolate position, Rp varies from Rp0

#%Rp to
Rp0

!%Rp . A mathematical transformation that will expand
the Z axis and contract the X and Y axes is introduced to give
the displacement field. The viscous dissipated power is then
derived from the Navier-Stokes equations yielding

/Pv0"
3
2 (-0

2V
%Rp

2

Rp0
2 . !6.4"

!The detailed calculation is in the Appendix." Combining
Eq. !6.4" and Eq. !6.3" yields the viscosity:

("
2)

3 Rp0
2 '% f r . !6.5"

This equation relates the width of the resonance peak to the
viscosity ( of the liquid.
For the limiting case of small oscillations around a spheri-

cal position (Rp0
"R), this equation differs from Eq. !1.1"

only by a coefficient 5/3, which is quite reasonable consid-
ering the simplicity of our approach. Thus, as gravity !or
droplet volume" increases, viscosity should be interpolated
from Eq. !1.1" to Eq. !6.5".

C. Discussion

Figure 6 shows a good agreement between the measured
and calculated % f r as a function of the volume for a cali-
brated silicon oil drop, whose viscosity is 10.1 mPa s. This
result underlines the necessity to take into account the flat-
tened shape of the drop. The displacement field is not the
same for a spherical and an oblate oscillating drop, and thus
the relation between peak width and viscosity is also differ-
ent.
To validate our setup for viscosity measurements, experi-

ments were performed on drops of water-glycerol with vari-
ous fractions of glycerol !from 20% to 85%". For each drop,
the viscosity calculated by Eq. !6.5" #with the value of Rp0
resulting from the minimization of the energy !see Ref. #4$"
and the measurement of % f r] is compared with data ex-
tracted from the literature #15$. Figure 7 displays the calcu-
lated and the real viscosity versus the fraction of glycerol.
The good correlation between calculated and real viscosity
shows that contactless viscosity measurements can be per-
formed with this setup with an accuracy of about 20%.

VII. NONLINEAR EFFECTS

In order to explain the distortion of the resonance peak
introduced in Sec. III !see Fig. 2", let us start with a geo-
metrical consideration: an oblate ellipsoid has its maximum
total curvature along the equator whereas a prolate ellipsoid
concentrates the maximum curvature at the two poles. The
oblate drop stores more surface energy than the prolate one.
This is confirmed by the asymmetric profile of the potential
energy curve calculated in the variational approach in Sec.
V.
As mentioned in Ref. #4$, we stress that the energy depen-

FIG. 6. Comparison of the experimental results for the width of
the resonance peak with the estimation from variational approaches
using ellipsoidal shapes. The solution given by Eq. !1.1" is shown
for comparison !– – –".
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dence on polar-radius coordinates is not symmetrical around
its minimum: this means that the drop behaves as a spring
easier to expand than to compress !in terms of the polar
radius". The viscoelastic model can then be modified by in-
troducing anharmonic terms. The relation between the force
F and the deformation %Rp of such a spring would be

F"-0
2M%Rp!+M%Rp

2!1M%Rp
3 , !7.1"

M being the mass of the system, , the dissipation coeffi-
cient, -0 the resonance angular frequency, F the amplitude
of the excitation force, and + and 1 the second and third
order anharmonicity coefficients. The corresponding equa-
tion of motion is

R̈p!Ṙp2,!-0
2Rp!+Rp

2!1Rp
3"

F
M cos-t . !7.2"

This is the anharmonic oscillator equation treated by Lan-
dau and Lifshitz in Ref. #16$. An expansion to third order in
2"-#-0 gives the relation between the forced oscillation
frequency - and amplitude %Rp :

2"$!" F
2M-0%Rp

# 2#,2!" 31

8-0
#
5+2

12-0
3# %Rp

2 .

!7.3"

The first term is the classical harmonic oscillator equa-
tion. The nonlinear effect is given by the last term of this
equation, which is negligible for small amplitude of excita-
tion. But as F !or %Rp) increases, the peak is shifted and
then distorted, leading to the appearance of hysteresis when
%Rp(-) exhibits three values for a given - . In Fig. 8, it can
be observed that when frequencies are scanned upward, the
system follows the resonance curve until point A !angular
frequency -sup), where it has no other possibility than to
jump to point B. In contrast, for a downward scanning, be-
tween B and C, the system usually stays on the upper branch
up to point C !angular frequency - in f) and then falls down
from C to D. The amplitude of hysteresis is set to be the
difference between the angular frequencies at A and D:
-sup#- in f .
Since the amplitude a of the excitation oscillations im-

posed at the south pole is much smaller than the resonance

amplitude %Rp , one can simultaneously assume a nonlinear
expression such as Eq. !7.1" for the response and a linear
relation between the force F and the amplitude a. The effec-
tive stiffness of the droplet is given by M-0

2. Therefore, one
can write

F"M-0
2a . !7.4"

The critical force Fc and excitation amplitude ac at which
this hysteresis appears are given by !Ref. #16$"

Fc
2"

32-0
2M 2,3

3!3$ 31

8-0
#
5+2

12-0
3$ and ac

2"
32,3

3!3-0
2$ 31

8-0
#
5+2

12-0
3$ .
!7.5"

In the experiments, the frequency - and the amplitude a are
the control parameters.
The eigenfrequency -0, calculated using the variational

approach agrees with the measured value given by the posi-
tion of the peak #4$. The coefficients + and 1 are estimated
from the anharmonicity of the energy profile. Note that the
deformed resonance peak is bent toward negative frequency
shifts. As mentioned in Ref. #10$, this corresponds to a nega-
tive third order anharmonic coefficient 1 , in accordance with
the energy profile. The critical amplitude above which hys-
teresis appears is related to the dissipation coefficient ,
")% f r through Eq. !7.5". The dissipation coefficient is re-
lated to the viscosity of the droplet through Eq. !6.5" derived
from the energetic approach of Sec. VI.
Above ac , a hysteresis defined as a frequency band with

three possible solutions !see Fig. 8" can be observed. A
rough estimate for the hysteresis in frequency can be given

FIG. 9. Hysteresis in the frequency-amplitude diagram as a
function of the excitation amplitude: comparison between experi-
ments and theoretical values.

FIG. 7. Viscosity of a 50 (l water-glycerol droplet at various
fractions of glycerol, analyzed using the viscoelastic model #Eq.
!6.5"$ compared with data from the literature !Ref. #15$".

FIG. 8. Frequency-amplitude diagram for different excitation
force F. With increasing excitation the peak becomes more and
more distorted and finally hysteretic behavior appears.
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by the distance between #CD$ and #BA$ on Fig. 8. In Fig. 9,
the experimental hysteresis is plotted versus the excitation
amplitude. For relatively low amplitudes, the estimate is in
good agreement with experiments. But for amplitudes larger
than 2.5 (m, the hysteresis is less important than predicted
by this simple model. In Fig. 10, the experimental hysteresis
curve is compared with the theoretical one given by Eq.
!7.3". The agreement is strikingly good. However, the jump
from the upper branch to the lower branch, when scanning
downward in frequency, occurs well before the ultimate limit
of the three valued domain. This is the origin of the discrep-
ancy exhibited in Fig. 9.
The dependence on viscosity ( of the critical amplitude

ac above which hysteresis occurs !or equivalently of the
critical excitation force Fc) is shown in Fig. 11. For low
viscosity droplets !less than 5 mPa s", the experimental criti-
cal amplitude is very accurately described by Eq. !7.5". For
viscosities larger than 5 mPa s, hysteresis is observed only at
much larger excitation amplitude. This transition also corre-
sponds to an overall instability of the droplet position: the
drop starts to bounce like a ball. Qualitatively, this can be
understood as follows: when the excitation amplitude a
reaches a value a* !of the order 4 (m, Fig. 11" a new
composite mode is excited. For viscosities larger than
35 mPa s, this will occur before reaching the threshold ac
for the ‘‘pure’’ deformation mode #ac4,3/2, Eq. !7.5" or the
solid curve in Fig. 11$. In our view, this new mode com-
prises two coupled components: deformation and bouncing.

This is likely to be describable, again, in terms of anhar-
monic oscillations, but with different dynamical parameters
(M ,-0 ,+ ,1 , etc.". If we consider that the main change is in
-0, then Eq. !7.5" indicates that ac increases when -0 de-
creases, in agreement with Fig. 11.
Finally, Fig. 12 shows a comparison between experimen-

tal and theoretical hysteresis curves just above the critical
amplitude ac . It shows that the present theory with no ad-
justable parameters describes correctly both the harmonic
and the anharmonic effects.

VIII. CONCLUSION

The main difference between the gas-film-levitation ex-
perimental conditions and the theory of free oscillation pre-
sented in the Introduction is the experimentally observed
nonspherical shape of the droplet at equilibrium. An
Archimedean arc can accurately represent the real shape, and
leads to results similar to an ellipsoid of revolution concern-
ing the resonance frequency. Thus, an ellipsoidal approxima-
tion can be used to model the dynamic of the droplet.
A relation between the viscosity and the width of the mea-

sured resonance peak has been derived. It takes into account
both shape and boundary conditions and can lead to accurate
contactless measurement of dynamic viscosity of liquids
from 2 mPa s to 150 mPa s.
The asymmetric profile of the energy curves points to the

nonlinear character of the oscillations due to anharmonicity.
A detailed description of the nonlinearity has been proposed
to explain quantitatively the distortion of the peak for high
amplitudes and the occurrence of hysteretic behavior.
The experimental setup described and validated in this

paper can be a tool to measure surface tension and viscosity
accurately. Contactless viscosity measurements could be use-
ful to study the rheology of materials in the semisolid state
without perturbing the dynamics of crystallization !no con-
tainer". Suspensions could also be studied without the clas-
sical boundary layer problems that frequently appear in Cou-
ette rheometry !no container and therefore no heterogeneous
nucleation; for a recent preliminary report, see Ref. #17$".

ACKNOWLEDGMENTS

The authors want to thank the DEM/SPCM/LPSI from
CEA Grenoble for providing the experimental facility. One

FIG. 10. Distorted resonance peak: comparison between experi-
ments and Eq. !7.3".

FIG. 11. The viscosity dependence of the critical excitation am-
plitude: comparison between theory from Eq. !7.5" and experi-
ments. Dashed line stands for a*, where new composite mode
!bouncing ! deformation" sets in.

FIG. 12. An example of distorted resonance peak close to the
critical excitation amplitude: comparison between experiments and
theory from Eq. !7.3".

2674 PRE 61PEREZ, SALVO, SUÉRY, BRÉCHET, AND PAPOULAR
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APPENDIX: CALCULATION OF THE VISCOUS
DISSIPATED POWER

The viscous dissipated power is calculated by writing the
velocity field inside the droplet, which itself is evaluated
from the displacement field.
If Mp(xp ,yp ,zp) is a point of the prolate shape,

Mo(xo ,yo ,zo), a point of the oblate shape, and M (x ,y ,z), a
point of the equilibrium shape, to ensure volume conserva-
tion, we have

xp"xoA#1/2,

yp"yoA#1/2 with A"
Rp0

!%Rp

Rp0
#%Rp

, !A1"

zp"zoA .

The displacement field resulting from the oscillation be-
tween the prolate and the oblate position is

x! t ""
xp!xo
2 !

xp#xo
2 sin!-t ""x!x sin!-t "

1#!A
1!!A

,

y! t ""
yp!yo
2 !

yp#yo
2 sin!-t ""y!y sin!-t "

1#!A
1!!A

,

!A2"

z! t ""
zp!zo
2 !

zp#zo
2 sin!-t ""z!z sin!-t "

A#1
A!1 .

The velocity field is the first derivative of the displace-
ment field:

vx! t ""x- cos!-t "
1#!A
1!!A

,

vy! t ""y- cos!-t "
1#!A
1!!A

, !A3"

vz! t ""z- cos!-t "
A#1
A!1 .

The divergence of the velocity field is not strictly zero as
expected for a noncompressible fluid, but is negligible com-
pared to any of its components. The viscous dissipated
power can be derived from the Navier-Stokes equations !see,
for instance, Ref. #12$":

/Pv0"
-0

2)!0
2)/-0(

2 !V" 5v i
5x j

!
5v j

5xi
# 2dVdt , !A4"

giving

/Pv0"
-0

2)!0
2)/-0(

2 V% " 25vx
5x # 2!" 25vy

5y # 2!" 25vz
5z # 2&dt .

!A5"

For small oscillations (%Rp /Rp0
&&1), a first order

power expansion in %Rp /Rp0
gives for the viscous dissi-

pated power

/Pv0"
3
2 (-0

2V
%Rp

2

Rp0
2
. !A6"
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