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Gibbs–Thomson effects in phase transformations
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Abstract

During phase transformations, like precipitation or solidification, processes such as nucleation, growth and coarsening depend

strongly on interfacial effects, named Gibbs–Thomson effects. Based, on simple thermodynamics considerations, a formulation of

the Gibbs–Thomson equation is proposed and different approximation solutions of this equation found in the literature are

discussed.
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Keywords: Phase transformation; Precipitation; Gibbs–Thomson effects
1. Introduction

In order to predict and model phase transformations,

like solidification, precipitation or massive transforma-

tion, it is necessary to evaluate with accuracy the Gibbs

free energy of the multiphased system. The influence of

interfaces on equilibrium (i.e. the interface curvature)
has to be taken into account. This is the so called

Gibbs–Thomson effect that modifies the solubility limits

given by equilibrium thermodynamics (phase diagram).

Most of the time such effects are very small, but in some

particular cases, like nucleation or coarsening, the

Gibbs–Thomson effect has to be incorporated in the

solubility limits.

Indeed, the corrected solubility limit Xeqr
of B atoms

in a matrix in equilibrium with b phase occurring as

spherical particles of radius r is often given as a function

of r [1–5]:

X a
eqr

¼ X a
eq1

exp
2cV m

rRT

� �
; ð1Þ

where T is the temperature, c the surface energy, R the

molar gas constant and Vm is the molar volume.
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Although Eq. (1) is almost always used in the litera-

ture as the Gibbs–Thomson correction, it does not apply

to a compound b phase, like AxBy. In this paper, a more

general expression for the Gibbs–Thomson correction is

proposed. After having evaluated the Gibbs free energy

of a binary solution, the equilibrium between the solid

solution a and the b phase will lead to the general form
of the Gibbs–Thomson correction. Finally, different

approximations of the literature are compared with the

numerical evaluation of the GT correction.
2. Equilibrium between two phases

We first evaluate the Gibbs free energy of a binary
solution of nA, A atoms and nB, B atoms. This solution

is called a phase. If we assume that the free energy is due

to the bond energies between adjacent atoms (regular

solution hypothesis) its Gibbs free energy is written as

follows:

Ga ¼ nA GA þ kT ln
nA

nA þ nB

� �

þ nB GB þ kT ln
nB

nA þ nB

� �
þ X

nAnB
nA þ nB

; ð2Þ
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where GA, GB are the molar free energies of pure A and

pure B phase respectively, and X = z(HAA/2 + HBB/2 �
HAB). HAA, HBB, HAB are the A–A, B–B and A–B bond

energies and z is the coordination number. The excep-

tional case where X = 0 is called an ideal solution.

Now, we introduce another phase (called b) of compo-
sition AxBy. We note Xp, the molar concentration of B in

the b phase:Xp = y/(x + y). For the sake of simplicity, the

b phase is considered as perfectly ordered (no configura-

tional entropy). Its free Gibbs energy is given by:

Gb ¼ nbGb
n ; ð3Þ

where Gb
n is the free energy per atom of b phase (i.e.

chemical potential) and nb is the number of atom in b
phase.

If the a phase is in equilibrium with the b phase,

transferring a small amount of A and B atoms from

the a phase of composition Xeq1
to the b phase (compo-

sition Xp) will not change the global energy of the sys-

tem. If dn atoms of b phase are transferred:

dnð1� X pÞ
oGa

ona
A

����
X eq1

þ dnX p

oGa

ona
B

����
X eq1

¼ dn
oGb

on
: ð4Þ

For a dilute regular solid solution, this is equivalent

to:

Gb
n ¼ ð1� X pÞ Ga

A þ kT lnð1� X eq1Þ
� �

þ X p Ga
B þ X þ kT lnX eq1

� �
: ð5Þ
3. Gibbs–Thomson equation

If we take into account the increase in free energy due

to the presence of the interface (of surface Sb), the Gibbs

energy of a b phase particle of nb atoms is then:

Gb ¼ nbGb
n þ cSb: ð6Þ

If we assume that b phase is spherical of radius r, the
average atomic volume vb

at is linked with the radius

through:

4
3
pr3 ¼ nbvb

at: ð7Þ

The partial derivative of the b phase Gibbs free

energy is then given by:

oGb

onb
¼ Gb

n þ
8prc

4pr2=vb
at

¼ Gb
n þ

2cvb
at

r
: ð8Þ

The equilibrium condition between the a phase (new

composition Xeqr
) and the b precipitate (composition

Xp) is then:

Gb
n þ

2cvb
at

r
¼ ð1� X pÞ Ga

A þ kT lnð1� X eqr
Þ

� �
þ X p Ga

B þ X þ kT lnX eqr

� �
: ð9Þ
We now substract the two equilibrium relations with

(Eq. (9)) and without (Eq. (5)) the interfacial effect, lead-

ing to the general form of the Gibbs–Thomson equation:

2cvb
at

rkT
¼ ð1� X pÞ ln

1� X eqr

1� X eq1

� �
þ X p ln

X eqr

X eq1

� �
: ð10Þ

This equation can be easily generalized in the case of

a multicomponent alloy ABC. . . at equilibrium with a b
phase of composition AxByCz. . . If XA,XB,XC, . . . are
the matrix mole fraction surrounding the b phase, the

generalized form of the Gibbs–Thomson is then:

2cvb
at

rkT
ðxþ y þ zþ � � �Þ ¼ x ln

XAr

XA1

� �
þ y ln

X Br

X B1

� �

þ z ln
XCr

XC1

� �
þ � � � ð11Þ

It is very interesting to note that if the radius is equal to

the nucleation radius r = R*, resulting from the classical

nucleation theory [1], a direct comparison between the

Gibbs–Thomson equation and the equation giving

the driving force for nucleation gives Xeqr
= X0 (X0 is

the matrix mole fraction of solute atoms). In that

case, the driving force exactly compensate the surface

force. The evaluation of the Gibbs–Thomson equation

and the classical nucleation theory are fully consistent

because they come out of the same thermodynamical

approach and formalism.

Even for binary alloys, the Gibbs–Thomson equation

does not have trivial solutions. However, three simple
approximations can be made: (1) Xp = 1; (2)

Xeqr
� Xeq1

; (3) Xeqr
	 1 and Xeq1

	 1.

(1) The simpler approximation Xp = 1 leads to the

famous Gibbs–Thomson factor:

X eqr ¼ X eq1 exp
2cvb

at

rkT

 !
: ð12Þ

Eq. (12) is equivalent to Eq. (1): the molar volume

being replaced by the atomic volume. This approxi-

mation is the most frequently encountered in the

literature. Indeed, some authors [5,6] use it errone-
ously because it applies only to pure precipitates or

phase (Xp = 1) and leads to non-negligible errors in

the case of compounds precipitate or phases (see

Section 4).

(2) Another approximation leads to an analytical for-

mulation of the Gibbs–Thomson term: Xeqr
� Xeq1

.

Indeed, the Gibbs–Thomson equation can be put in

the following form:

2cvb
at

rkT
¼ ð1� X pÞ ln 1þ X eq1 � X eqr

1� X eq1

� �

þ X p ln 1þ X eqr � X eq1

X eq1

� �
: ð13Þ
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Fig. 1. The exact solution of Eq. (10) is compared with the three

different approximations for the case of Cu4Ti precipitation in Cu–Ti

alloy. Eq. (17) gives the best approximate values.

Table 1

Parameters for Cu4Ti precipitation at 600 �C

Xp Carbon mole fraction of Cu4Ti 0.2

Xeq1
Solubility limit (flat interface) 0.0214 [11]

vb
at Mean atomic volume of Cu4Ti 1.31 · 10�29 m3 [11]

c Surface tension 0.063 J/m2 [11]
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In that case, series expansion of logarithmic terms

gives:

2cvb
at

rkT
¼ ð1� X pÞ

X eq1 � X eqr

1� X eq1

þ X p


 X eqr
� X eq1

X eq1

: ð14Þ

Leading to the following form, called the �general
case� by Doherty in Ref. [7], also used by Fujita

and Bhadeshia [8] and very similar to the expres-

sion given by Hillert [9] and Morral and Purdy [10]:

X eqr
¼ X eq1 1þ 2cvb

at

rkT
1� X eq1

X p � X eq1

 !
: ð15Þ

(3) Another approximation is the case of diluted solid
solutions: Xeqr

	 1 and Xeq1
	 1. In that case, the

first term of the Gibbs–Thomson equation is negligi-

ble compared to the second one, except when

Xeqr
� Xeq1

(non-trivial). We can then put:

e = Xeqr
� Xeq1

, leading to:

2cvb
at

rkT
¼ ð1� X pÞð�eÞ þ X p

e
X eq1

: ð16Þ

In that form, the first term of the Gibbs–Thomson

equation is still negligible compared to the second

one. The equilibrium concentration is then:

X eqr ¼ X eq1 exp
2cvb

at

X prkT

 !
: ð17Þ

To the knowledge of the present author, Gibbs–

Thomson effects are very rarely described using

Eq. (17), despite its simplicity.

In the next section, these three approximations will be

compared with numerical resolution of the Gibbs–

Thomson equation (Eq. (10)) in two cases: Cu4Ti precipi-

tates in a binary CuTi alloy and cementite precipitation

in a low carbon steel.
4. Applications

4.1. Cu4Ti precipitation in a binary CuTi alloy

Comparison of the numerical solution of the Gibbs–
Thomson equation and the three mentioned approxima-

tions for the case of Cu4Ti precipitation in a CuTi alloy

is shown in Fig. 1. Table 1 gives the parameters used to

evaluate Xeqr
. Experimental measurements performed by

Miyazaki et al. [5] are also shown in Fig. 1. Note that the

very good fit between the Gibbs–Thomson equation and

experimental data is due to the fact that surface tension

c and solubility limit Xeq1
proposed by Qian et al. [11]

were fitted with the measurements of Miyazaki et al. [5].
However, we clearly observe that the first approxima-

tion (Xp = 1, Eq. (17)) is clearly unsuitable for radii
smaller than 10 nm. For lower radii, the approximation

(Xeqr
	 1 and Xeq1

	 1, Eq. (17)) seems to be better

than the other one (Xeqr
� Xeq1

, Eq. (15)). Note that

for small radii, the Gibbs–Thomson equation has no

solution: the b phase is unstable due to the high amount

of interfacial energy stored in the precipitates.

4.2. Cementite precipitation in a low carbon steel

Fig. 2 shows the evolution of Xeqr
as a function of the

precipitate radius for the case of cementite precipitation

in a low carbon steel that has been studied in a previous

work [12]. Table 2 gives the parameters used to evaluate

Xeqr
. In this case the first approximation (Xp = 1, Eq.

(17)) is clearly untrue for radii smaller than 100 nm.

The second one (Xeqr
� Xeq1

, Eq. (15)) is still valid for
radii larger than 10 nm, whereas the third one (Xeqr

	 1

and Xeq1
	 1, Eq. (17)) remains valid in the whole range

of radii.

4.3. Discussion

To extend the validity of Eq. (12), many authors

express the Gibbs–Thomson equation as formulated in
Eq. (1) with the ambiguous term Vm, which is given to

be the �molar volume� of b phase. If it means the volume

of one mole of b atoms, Eqs. (12) and (1) are strictly
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compared with the three different approximations for the case of Fe3C

precipitation in Fe-C alloy: the approximation Xeqr
	 1 and Xeq1

	 1,

Eq. (17) is remarkably good in the whole domain.

Table 2

Parameters for low carbon steel at 200 �C

Xp Carbon mole fraction of Fe3C 0.25

Xeq1
Solubility limit (flat interface) 7.3 · 10�6 [13,12]

vb
at Mean atomic volume of Fe3C 1.17 · 10�29 m3 [1,12]

c Surface tension 0.174 J/m2 [12]
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equivalents, and as seen previously, not a very accurate

approximation. If it means the volume of one mole of

AxBy, the frequently encountered approximation (Eq.

(1)) is then equivalent to the proposed approximation

(Eq. (17)) only in a particular case where y = 1.
5. Conclusion

In order to take into account the presence of inter-

faces during phase transformation, it is necessary to

add the capillarity term (2c vat/r)in the Gibbs free energy

of the multiphased system. This leads to the general for-

mulation of the Gibbs–Thomson effect giving a relation

between the matrix composition at the interface with (i)

a precipitate of radius r and (ii) a precipitate of infinite
radius (flat interface).

For practical reasons, approximations of this formu-

lation are often used in the literature. However, it has
been showed that for compound precipitates, some of

these approximations are not valid in the considered

precipitates radii range. A very simple approximation

has been proposed, giving values of composition very

close to the exact solution of the Gibbs–Thomson equa-

tion in a wide range of radii. In any case, the chosen
approximation has to be compared with the numerical

solution of the Gibbs–Thomson equation in order to

check its domain of validity.
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