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Abstract

Nano-objects (wires, particles, thin films) are known for their outstanding mechanical
properties when compared to their bulk counterparts. Various experimental techniques
(transmission and scanning electron microscopy, X-ray diffraction) are used to investigate
nano-objects, all complemented by computational approaches such as molecular dynamics.
While modelling atomic-scale processes in the details, molecular dynamics is limited in
terms of sample size and strain rates opening doors to other methods such as the discrete
dislocation dynamics. Discrete dislocation dynamics is able to describe the evolution of
a dislocation population at the mesoscale but is mostly used to describe quasi-infinite
ensembles using either particularly large simulation cells or relying on periodic boundary
conditions. Consequently, standalone discrete dislocation dynamics cannot provide a com-
plete description of sample surfaces that are known to be at the roots of several nanoscale
processes.
This study aims at better and faithfully model the mechanics of nano-objects accounting
for the complex interactions between dislocations and surfaces. For this purpose, a new
tool called El-Numodis was developed. El-Numodis relies on the coupling of the discrete
dislocation dynamics code Numodis with the finite elements code Elmer using the super-
position method in which the stress field generated by a dislocation population is corrected
at the virtual surfaces of a finite-size sample using a finite-element elastic solver. In this
work, we present the main development stages of El-Numodis (coupling drivers, disloca-
tion image forces, nucleation algorithm, etc.) as well as several applications including
analytically soluble elasticity problems in which surfaces are involved. As an example, the
modelling of face-centered cubic metal thin films practically demonstrates the influence of
surfaces on nano-objects mechanics. Finally, El-Numodis is used to model the mechanics
of ceramics nanoparticles for which atomistically-informed dislocation nucleation as com-
bined to the transition state theory allow to investigate the role of size, temperature and
strain rate on the mechanical properties of MgO nanoparticles.
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Résumé en français

Les nano-objets (fils, particules, films minces) sont connus pour leurs propriétés mé-
caniques exceptionnelles au regard de leurs homologues massifs. Diverses techniques ex-
périmentales (microscopie électronique à transmission ou à balayage, diffraction des rayons
X) sont utilisées pour étudier les nano-objets, complétées par des approches numériques
telle que la dynamique moléculaire. Bien que fournissant des détails à l’échelle atomique,
la dynamique moléculaire reste limitée en termes de taille et de vitesse de déformation,
ouvrant la porte à d’autres méthodes comme la dynamique des dislocations discrète. La
dynamique des dislocations discrète permet de décrire l’évolution d’une population de dis-
locations à l’échelle du grain mais est généralement utilisée dans des ensembles quasi-infinis
en utilisant des cellules de simulation particulièrement grandes ou des conditions limites
périodiques. Par conséquent, la dynamique des dislocations discrète seule ne peut fournir
une description physique des surfaces d’un échantillon, surfaces à l’origine de nombreux
processus à l’échelle nanométrique.
Cette étude vise à modéliser mieux et plus fidèlement la mécanique des nano-objets en ten-
ant compte des interactions complexes entre les dislocations et les surfaces. Pour ce faire,
un nouvel outil appelé El-Numodis a été développé. El-Numodis repose sur le couplage du
code de dynamique des dislocations discrète Numodis avec le code d’éléments finis Elmer
en utilisant la méthode de superposition. Nous présentons ici les étapes de développe-
ment d’El-Numodis (pilotes de couplage, forces d’image des dislocations, algorithme de
nucléation, etc.) ainsi que plusieurs applications incluant des problèmes d’élasticité clas-
siques dans lesquels des surfaces sont impliquées. A titre d’exemple, la modélisation de
films minces métalliques fcc montre l’influence majeure des surfaces sur la mécanique des
nano-objets. Enfin, El-Numodis est utilisé pour modéliser la mécanique de nanoparticules
céramiques où la nucléation de dislocation informée de manière atomistique, combinée à
la théorie de l’état de transition, permet d’étudier le rôle de la taille, température et de la
vitesse de déformation sur la déformation de nanocubes de MgO.
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General introduction

The recent progresses observed in various fields of technological applications (like
medicine, electronics and mechanics) are often implicitly related to the study of nano-
objects i.e., sample with dimensions of few tens nm. Their broad field of applications is
related to the radical changes in their physical properties. For instance in medicine, encap-
sulated nanoparticles with high chemical absorption are used as drugs delivers [MOH 07]
or for imagery and pathology treatments [PAR 14]. In information storage technology,
nanowires are used for their superparamagnetic capabilities including very fast response
to external fields with almost zero remanence [LU 07, ZHA 10]. In the fields of tribol-
ogy and mechanics, nanoparticles are used to improve the performance of lubricants
[AKB 12, CUI 20] or to make implants [LI 13] due to their high resistance.

On the other hand, nanocrystals and their improved mechanical properties are used
to enhance materials with larger dimensions. At higher scales, nanoparticles are used
as building blocks of nanocrystalline materials to be sintered and compacted to improve
the properties of compounds later used in devices requiring high mechanical resistance.
Nanowires can also be used as strengthening constituents [ELS 07, SHE 19]. When built
from smaller grains, the mechanical performances of nanocrystalline materials are im-
pacted by the fabrication method, the size, shape and distribution of nanograins as well
as by the presence of pores and other defects [ALA 15]. In most of the cases, the strength
variations observed in nanocrystalline materials are related to the grain size following the
Hall-Petch, or at even smaller size, the inverse Hall-Petch model [HAN 04, PAD 01]. In
the inverse Hall-Petch regime, elementary processes implying shear processes within the
grain boundaries are also involved. Understanding the mechanics of nanocrystalline mate-
rials requires the investigation of both; the isolated nanograin and the nanopowders used
for their fabrication in a bottom-up approach.

Besides classical bulk characterization, nanomaterials can be investigated running me-
chanical tests on individual building grains that generally follow the “smaller is stronger”
paradigm [UCH 09, GRE 11]. The strength increase of nanocrystals is also concomitant
to an increase of their ductility. However, the reasons for such mechanical improvements
are many and can vary depending on sample shape or aspect ratio. Several numerical and
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General introduction

experimental methods exist to investigate the mechanical properties of nano-objects. For
example, nanocompression in the scanning or transmission electron microscope are the
most used techniques for nanoparticles experimental characterization. Experiments are
reported for size ranging from few 100 nm down to few tens nm and for low deformation
rate (from 10−4 to ∼1 s−1). While the use of the transmission electron microscope allows
for microstructure, defect and surface characterizations, it is still a complex and tedious
method and several intrinsic or extrinsic problems including sample misalignment, con-
tamination and oxidation are commonly reported [WIL 96, ZAE 11].

On the other hand, computational methods provide a support often used to help to in-
terpret experimental outcomes. Molecular dynamics is the most-employed numerical tech-
nique used to simulate the mechanical properties of nano-objects [KOM 01, AMO 21b]. It
is based on interatomic potentials that allow to compute atomic forces and integrate the
dynamics of all the atoms present in a sample under load. However, due to computational
costs, sample size is limited to few tens of nm in molecular dynamics and simulations are
performed at super high strain rate (∼108 s−1). Moreover, the discrete dislocation dy-
namics (also called dislocation dynamics) simulation technique allows to increase sample
dimensions (up to a few hundred microns) and reduce the strain rate, both getting closer
to experimental conditions. Discrete dislocation dynamics allows to model dislocation
lines based on constitutive equations rather than atomic interactions, therefore, discrete
dislocation dynamics simulations computationally overcomes the size and time limits of
molecular dynamics. However, discrete dislocation dynamics codes are generally developed
for bulk applications and often lack of nanoscale specifications. For examples, former dis-
crete dislocation dynamics codes missed a criterion for dislocation nucleation that we will
see is a crucial process in nanomechanics. They also generally do not account for the inter-
action between dislocations and surfaces as well as images forces generated by free surfaces.

Based on these considerations, one can rise the question on the necessity of a numeri-
cal tool to investigate the mechanical properties of nano- and micro-objects including the
effect of sample size and strain rate as well as the ability to account for most of nanoscale
elementary deformation processes. In other words; is it possible to break the spacial and
temporal limits of the current simulations tools considering the effects of surfaces when
modeling small-scale mechanics?

Here we will see that the answer might rely on the development of a multi-scale
modeling approach (Figure 1) that partly consist in using the discrete dislocation dy-
namics method combined with a numerical solver in charge of the boundary value prob-
lems. Previous cases exists. In 1995, Van der Giessen and Needleman proposed a cou-
pling strategy using the superposition method applicable to two dimensional problems
[Van 95]. Latter on, the superposition method was extended to tree dimensional prob-
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General introduction

Figure 1: Characteristic lengths and time scales of simulation techniques [GOE 20].

lems by Fivel and collaborators [FIV 97, FIV 98, CHA 10]. In 1999, Lemarchand and
coworkers proposed an alternative formulation known as the discrete continuous method
[LEM 99a, LEM 99b, LEM 01] based on the eigenstrain formalism of Mura [MUR 87].
Overall, the discrete continuous method consists on a more elaborated approach than the
superposition method, however the superposition method is easier to implement [CUI 15].
Here we will go further developing this type of approach for nanomechanics applications.

In this thesis, we review the superposition method to investigate the mechanics of nano-
objects using the discrete dislocation dynamics nodal code Numodis [DRO 14, SHI 15] and
the finite element software Elmer [MAL 13] to build a unique coupling tool: El-Numodis.
The aim of this study is to provide a multi-scale simulation tool accounting for surface
effects with the capability of both dislocation nucleation and initial dislocation microstru-
ture evaluation.
The thesis manuscript is organized as follows. In the first chapter, we review the me-
chanical properties of small-scale objects starting from noncrystalline materials down to
the individual crystal. Also, a literature review on dislocation dynamics/finite element
coupling methods currently used in multi-scale simulations is provided. Examples on the
effect of surfaces on the mechanical properties at the nano- and micro-scales are presented.
In chapter two, we introduce discrete dislocation dynamics theoretical basics and the Nu-
modis code including the treatment of boundary conditions and short-range dislocation vs.
dislocation interactions for linear isotropic media. The linear elastic boundary value prob-
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lem; the finite element method and Elmer are presented at the end of this chapter. In the
third chapter, we describe the implementation of El-Numodis. Details about the boundary
conditions, data array interchanges and other features implemented are provided. First
results and benchmarks (dislocation stress fields, dislocation vs. surfaces simple cases,
etc.) obtained using El-Numodis are presented in chapter four. This chapter ends with an
application of El-Numodis to thin-film mechanics. In chapter five, we present the method-
ology to integrate the dislocation nucleation processes into El-Numodis. It starts with few
theoretical aspects about the harmonic transition state theory and kinetic Monte-Carlo
statistics. Then, toy simulations and more quantitative one are presented using creep
and constant strain rate simulations on face-centered cubic materials. A case-study on
the role of temperature on the dislocation nucleation process is presented as well as a
direct comparison to molecular dynamics nanocompression simulation [ISS 15] using an
atomistically-informed database computed for the surface dislocation nucleation process
in MgO nanocubes [AMO 21a]. Finally, deeper details about the role of temperature on
the yield stress stress of MgO nanocubes as well as the influence of the sample size and
strain rate on mechanical properties are developed. A general conclusion about the main
results obtained during this PhD work as well as some perspectives and recommendations
to improve El-Numodis are provided at the end of the manuscript.
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Chapter 1

Literature review

This chapter provides a literature review of the mechanics of micro- and nano-objects.
It starts with a description of how mechanical properties vary with size i.e., the “smaller
is stronger” trend, from nanocrystalline materials to small individual objects. Indeed,
wires, pillars and particles are commonly investigated using in situ transmission electron
microscopy and molecular dynamics, both techniques being presented with their own pros
and cons. Then, the effect of surfaces on the mechanical properties of small-scale objects
is presented and discussed. Finally, a formal introduction to hybrid mechanical simulation
methods coupling discrete dislocation dynamics and finite-element methods is provided.
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1.1 Mechanics at small-scales

In the recent years, the study of micro- and nanomaterials has shown a renewed in-
terest due to the radical changes in their physical properties with respect to their bulk
counterparts [ODE 01, SON 08, FIN 20]. In fact, this size dependence mostly arises from
the increasing surface over volume ratio when scaling down. In the following, we introduce
some of the main aspects associated with the improvements of the mechanical properties
when decreasing the characteristic sizes of materials.

1.1.1 Decreasing the grain size of bulk materials

Before detailing mechanical specific aspects of individual micro- and nanocrystals lets
first focus on what happens when decreasing the grain-size of bulk materials at such small-
scales. Most of the answer relies on the Hall-Petch behavior (Figure 1.1) that consists in
the strengthening of the material inversely with the overall grain size [HAL 51, PET 53,
SUR 04]. The Hall-Petch model links the yield stress σy of the sample to the grain size d
through equation 1.1, were σ0 is a friction stress and A is a constant. The parameter x
varies as a function of the material and grain size.

σy = σ0 +Ad−x (1.1)

For materials with millimeter grain size down to several tens of nm the material
strengthening with sample-size reduction is due to the reduction of the mean free path
of dislocations [BEN 07, BOU 10]. Indeed, the plastic deformation is associated in this
case with the multiplication of dislocations and each mechanism impinging the glide of
dislocations tends to increase the strength of the material. With decreasing the grain
size the dislocation-dislocation and dislocation-defect interactions are promoted but a
massive effect is attributed to grain boundaries (GBs). Indeed, reducing the grain-size
increases the GB over perfect crystal volume ratio what reduces the defect-free perfect
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Mechanics at small-scales

crystal volume allowed for the dislocations to glide enhancing the dislocation pile-up pro-
cess [PAN 93, Wan 95, FED 03, MEY 06]. However, below a critical size, the material
strength decreases again with reducing the grain size. Explanations for such inverse Hall-
Petch effect includes grain rotation, GB sliding and shearing as well as emission and
absorption of dislocations at the GBs [FAN 05, KOL 07, GUO 18, YU 18].

Figure 1.1: Stress dependence with grain size for nanocrystalline materials: Hall-Petch and inverse Hall-Petch
regimes. Image from [GRE 11].

(a)
(b)

Figure 1.2: Hall-Petch behavior in a nanocrystalline ceramic. (a) High magnification TEM image of MgAl2O4

thin GBs region. The image emphasize the GBs without porosity. (b) three regions identified related to
Hall-Petch (I), inverse Hall-Petch (II) and a plateau without size effect (III). Image adapted from [RYO 18].

Several studies focus on characterizing the yield-strength dependence on grain size as
well as the transition region from the Hall-Petch to the inverse Hall-Petch regime using
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Chapter 1 – Literature review

both experiments and simulations.
As an example, Ryou et al. [RYO 18] studied the Hall-Petch breakdown in ceramic
nanocrystalline materials. MgAl2O4 ceramics can be synthesized via environmentally con-
trolled pressure-assisted sintering techniques ending up in material with grain size from
37.5 down to 3.6 nm without porosity (Figure 1.2 (a)). Indentation was performed at
35, 1, 0.1 and 0.05 s−1 strain rates and the samples were characterized using transmission
electron microscopy (TEM). The authors observed the conventional Hall-Petch effect com-
pressing particles with grain size down to 18.0 nm (Figure 1.2 (b)). The inverse Hall-Petch
regime was observed for grain size ranging from 10.8 to 4.6 nm. The final stage identified
as plateau was found under 4.6 nm where neither conventional or inverse Hall-Petch holds.

Another example is the work of Jang et al. [JAN 11] in which Ni-W (4.4 %) polycrys-
talline nanopillars with grain size of 60 nm were studied by uniaxial compression (Figure
1.3 (a,b,c)) and tension (Figure 1.3 (d,e,f)). Figures 1.3 (a,d) show scanning electron mi-
croscopy (SEM) images of the pillar before deformation. Figures 1.3 (b,c and e,f) show
the pillar pushed and pulled respectively. The behavior showed in the Figures 1.3 (g)
for compression and (h) for tension is completely different from what is expected from
both; the bulk sized nanocrystalline and nanometer sized single-crystalline metals. For
both experiments there is a remarked weakening with the decrease of the size. The au-
thors reported a deformation mechanisms transition from dislocation-driven deformation
to GB-mediated deformation in pillars of 100 nm and below. They concluded that the
presence of free surfaces activates these grain-boundary-mediated deformation processes
at much larger grain sizes than observed in the case of the bulk material.

A theoretical model describing the grain size dependence of the flow strength suggesting
a competition between dislocation slip (over a critical grain size dc) and the GBs activity
(below dc) was reported by Fan et al. [FAN 05]. The authors assumed elastic grains free of
dislocation, surrounded by an amorphous structure, and the model was used to correctly
fit experimental results on copper and nickel.
Using molecular dynamics (MD), Schiotz et al. [SCH 98] investigate the inverse Hall-Petch
regime in noncrystalline copper with grain size from 3.3 to 6.6 nm. They reported that
both the yield and flow stresses decrease with the grain size.

In another study, Chen et al. used MD to investigate CoNiFeAlxCux nanocrystalline al-
loys with face-centered cubic (FCC) or body-centered cubic (BCC) structures [CHE 20a].
CoNiFeAlxCux is knows to change from FCC to BCC when the local lattice strain exceed
the stress required for BCC nucleation or by tuning the Al concentration. The authors
deformed 30 × 30 × 30 nm3 samples with grain sizes from 7.2 to 18.8 nm in case of FCC
phases and 7.2 to 23.4 in case of BCC. The simulations were carried at room temperature
with an strain rate of 2 × 108 s−1. They found the transition from Hall-Petch to inverse
Hall-Petch for grain size of 12.1 nm in the case of FCC structured alloys (Figure 1.4)
and 18.9 nm for the BCC alloy. The main factors associated to the strength of the FCC
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Mechanics at small-scales

G H

Figure 1.3: Experimental study of Ni-W nanopillars. SEM images of (a) as fabricated pillars and (b,c) deformed
by compression. SEM images of square pillars deformed under tension: (d) as fabricated and deformed (e,f).
Stress-stain curves are showed in (g) for compression test and (h) for tension. Images from [JAN 11].

alloy are the continuous emission and propagation of partial dislocations that cross the
grains before being stopped or absorbed at the other side of the sample (depending on the
coherence and orientation of the grains and GBs) or adjacent partial dislocations leading
to deformation twining mechanism.

In general, experimental studies reveal that most of nanocrystalline metals or ceramics
exhibit a limited ductility [MEY 06] what constrains the field of applications of such ma-
terials. However, some investigations show that rooms exist to improve it. Koch [KOC 03]
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Figure 1.4: MD simulation of CoNiFeAlxCux alloys with FCC phases. Images indicates the atom type (a),
and phase (b) and compression direction (c). Stress-strain curves for sample sizing from 12.1 to 18.8 nm (d)
and from 7.2 to 12.1 nm (e) are shown. (f) Relation between the yield strength and grain size. Image from
[CHE 20a].

Zn

Cu

Cu

Co

Cu

Figure 1.5: Normalized yield strength and ductility for Cu, Co and Zn nanostructured materials (grey symbols).
The blue area under the red line represent the trade-off zone (high strength and low ductility). The orange
symbols represent Cu nanostrucutured samples with improved ductility and high strength. Figure adapted from
[KOC 03] and [ZHU 04].

discussed the possibility to optimize strength but also ductility of ultra-fine nanocrystalline
materials building an appropriate grain size distribution and introducing secondary phases
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Mechanics at small-scales

(Figure 1.5). Zhu and Liao [ZHU 04] suggested that ductility can be increased by pres-
straining the samples at high strain rate using a long fabrication process that produces
sharp and narrow grains. Also Farkas and Hyde [FAR 05], showed using using Molecular
Statics (MS) and MD that the fracture resistance of BCC nanocrystalline materials in-
creases below a critical size. They also reported that adding impurities can enhance GB
cohesion and avoid the inter-granular failure mechanism.

To improve and better understand the mechanical behavior of small-grain materials,
several research groups (including MATEIS) investigate oligocrystals made of only few
grains or even isolated single crystals and develop bottom-up approaches [LAI 13, ISS 15,
ISS 21]. These last decades, several micro- and nano-mechanical tests were developed on
pillars, particles, wires or thin films to better understand dislocation processes at small-
scale. In the next section, we will introduce several elements related to this subject with
a specific emphasize on the roles of size and shape on the strength and elementary defor-
mations processes of surface-dominating samples.

1.1.2 Deformation of micro- and nano-objects

In the early 00’, Uchic et al. performed compression tests on metal micropillars with
the aim to propose a quick-and-cheap method for testing miniaturized materials that could
be transferred up to the industry [UCH 04]. However, the authors have observed a signifi-
cant size-effect on the yield stress of Ni an NiAl micropillars similar to the aforementioned
Hall-Petch effect but here in single-crystals i.e., without GBs (Figure 1.6). This work
opened a highway to a huge amount of studies focusing on the mechanics of micro- and
nano-objects, not only related to their possible applications but also to understand the
underneath size-effect and, more broadly, improve our general understanding of small-scale
mechanics.

Among the many studies devoted to metal micro- and (then) nano-pillars, one can no-
tice the intensive work performed by the Greer’s group at Caltech including among others
FCC (Cu, Al, Ni) and BCC (Mo) metals. In Jennings et al. [JEN 10], compression exper-
iments were performed on single crystalline 〈111〉-oriented Cu nanopillars with diameters
between 100 and 500 nm made by lithography with nonzero initial dislocation densities.
Such method produces smaller concentration of dislocations per m2 as compared with the
traditional focused ion beam (FIB). The deformation was performed at a constant dis-
placement rate of 2 nm/s using a flat punch. Figure 1.7 (a) shows the stress-strain curves
of four samples with different diameters. A strength increase is observed with the diame-
ter reduction. Several models are suggested to justify this strengthening in single-crystals
including dislocation source controlled plasticity, dislocation source truncation or exhaus-
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Figure 1.6: Experimental deformation at room temperature of pure Ni micropillars with 〈134〉 orientation. (a)
Stress-strain curves of pillars with diameter sizes ranging from 5-40 µm. The curves are compared to the
mechanical response of a bulk single crystal. (b) SEM image of a 20 µm diameter pillar at 4 % strain. (c) SEM
image of a 5 µm diameter pillar after reaching 19 % strain. Image from [UCH 04].

(a) (b)

(c) (d)

Figure 1.7: Submicronic pillars compression of FCC and BCC metals. Stress-Strain curve for Cu (a) and Mo
(c) nanopillars of different diameters showing the “smaller is stronger” trend. Yield stress vs. pillar diameter
for Cu (b) and Mo (d) with slopes -0.63 and -0.44 respectively. Images from [JEN 10] and [KIM 08].

tion, starvation or nucleation-controlled plasticity [KRA 10, GRE 11]. Also, Figure 1.7
(a) shows strain bursts that are classically observed in all nano- and micro-pillar compres-
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sion tests when performed under load-control (in contrast with displacement-controlled
tests). A log-log plot of the flow stress at 10 % strain against the pillar diameter is showed
in Figure 1.7 (b). The strength follows a power law dependence wit the slope around
−0.63 ± 0.04 in consistency with values reported for other metallic pillars. The author
concluded that the plasticity at the sub-micron scale is strongly dependent of the disloca-
tion microstructure.

(a) (b)

Figure 1.8: Size effect observed in Cu nanopillars. (a) Four characteristic stress-strain curves plotted for pillars
of two different diameters, 125 and 250 nm, each deformed at two different strain rates, 10−3 and 10−1 s−1.
At a constant strain rate, smaller pillars have higher strengths, whereas at constant diameter, faster strain rates
result in higher strengths. (b) Strength as a function of diameter for three different strain rates (log–log scale).
Trend lines denote power-law strengthening where plasticity is governed by collective dislocation dynamics.
Images from [JEN 11b].

In another study focusing on BCC Mo [KIM 08], the same group reported a size-effect
observed in nanopillars with diameter between 200 to 900 nm compressed at the same
constant displacement rate of 2 nm/s. Figures 1.7 (c) shows stress-strain curves and
Figures 1.7 (d) illustrates flow stress and yield strength vs. pillar diameter, respectively
with slopes of -0.44 and -1.07 indicating that the size-effect is more pronounced in the yield
strength rather than in the flow stress. Finally, the authors justify the size-effect as a pure
consequence of the sample size without considering the influence of the initial dislocation
density or surface defects hardening. The effect of the strain rate was investigated during
compression of different nanopillars diameters in [JEN 11a, JEN 11b]. The compression
tests were performed for five different sample diameters (500, 250, 150, 125 and 75 nm)
under nominal constant strain rates of 10−1, 10−2 and 10−3 s−1. Figure 1.8 (a) shows
the stress-strain curves for samples with size 125 and 250 nm deformed at at high 10−1

and slow 10−3 s−1 strain rates. At constant strain rate, the smaller samples are stronger
while at constant diameter the stronger samples are those deformed at high strain rate.
Increasing the strain rate by two orders of magnitude results only in a 15 % strength
increase in the 250 nm pillars, while the strength in 125 nm pillars increases by almost
100 %.
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In Figure 1.8 (b), a log–log plot of flow stress at 10 % strain as a function of the pillar
diameter for different strain rates is presented. For the three different strain rates, the
power-law exponent remains nearly constant. Transition from dislocation multiplication
to dislocation nucleation is reported.

Figure 1.9: Dependence of the normalized yield stress (shear yield stress over the shear modulus) in function of
the pillar diameter and its respective power-law fit for different materials. The figures are ordered in function of
the lattice resistance to dislocation motion: (a) FCC metals carrying low lattice resistance. (b) BCC metals with
intermediate lattice resistance. (c) Ceramics. (d) MgO together with all the data shown in (a-d) represented
by colored areas. Images from [KOR 11].

Ceramics micro- and nano-objects are also concerned by size-effect. As an example,
Korte et al. [KOR 11] investigated MgO micropillars under compression and compared
them to metals and ceramic semi-conductors (Figure 1.9). The samples were prepared us-
ing FIB milling and were deformed under load control using a flat punch in the SEM. The
authors have investigated the two slip modes of MgO changing the compression direction.
The soft slip system 1

2〈110〉{110} is activated while compressing along the [100] direction
and slip on the hard slip system 1

2〈110〉{100} is observed when compressing along [111]
(Figure 1.9 (d)). The authors observed higher yield stresses in the smaller pillars with
the larger values obtained for samples compressed along [111]. The results show that the
MgO soft slip system have a size effect similar to BCC metals.
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D E

Figure 1.10: Shape memory and superplasticity in zirconia pillars. Example of shape recovery after loading
deformation by using thermal treatment (a-c). Stress-strain curve characteristic of a superplastic deformation
and shape recovery obtained by load-unload experiment (d). Evolution of the hysteresis loop with respect to
the number of cyclic load-unload deformations (e). Images from [LAI 13].

In addition, shape-memory ceramics were investigated by Schuh and collaborators
[LAI 13, DU 15, ZEN 17]. Indeed, the failure associated to the brittle zirconia-based
ceramics can be delayed due to a transformation-induced plasticity effect tuned by the
alloying composition. In particular, the authors investigate these outstanding mechanical
properties in olygocrystals. Under those conditions, the internal stress mismatch is cor-
rected allowing the ceramic to withstand several elasto-plastic cycles reaching very large
strains. Using zirconia pillars primarily in the austenite phase (tetragonal structure), the
authors have shown that a conversion to martensite (monoclinic) was promoted by loading
at room temperature (Figure 1.10 (a-b)). A backward transformation to austenite with
the initial shape recovered is found when thermal treatment is applied (Figure 1.10 (c)).
The same phase transformation and shape recovering is obtained by loading-unloading
processes (Figure 1.10 (d)). Cyclic deformations lead to a gradual evolution of the hys-
teresis loop suggesting that the material becomes “trained” to a transformation pathway
(Figure 1.10 (e)).
These studies show that even originally brittle materials such as ceramics can withstand
significant amount of stress and strain when decreasing size.
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Figure 1.11: Mechanical test of gold NWs using in situ TEM (scale bar of 100 nm). (a-c) Images taken after
the load drops in the compressive loading; the traces in the lateral surfaces of a dislocation slip mechanism are
showed with blue arrows. (d-f) Unloading the sample sowing the nucleation and extension of nanotwin. (g)
Recorded force versus strain during the compressive (blue) and subsequent tensile (red) loading. Images from
[LEE 14].

To study mechanics at even lower scale i.e., at the nanoscale, nanowires (NWs) can
also be deformed under tension, bending or (scarcely) under compression. For example,
the transition from dislocation slip to deformation twining as function of loading condi-
tions (Figure 1.11) as well as detwinning and memory shape is reported by Lee et al.
using both in situ TEM and MD [LEE 14]. During the first stages of compression, the
authors observed the nucleation of perfect dislocations in the region near the sample top
and the flat punch. Such dislocations immediately glide and escape near the contact re-
gion leaving the NW top with a mushroom shape. Further half loops were reported in
regions far from the NW’s top. The adhesive contact formed between the NW and the
flat punch during the compressive deformation allows to perform tensile test by simply
reversing the loading direction. At the initial stages of the tensile test the pre-existing
dislocations that formed during compression slip back. Then, the mechanism predom-
inantly observed is deformation twinning. The force vs. strain curve is represented in
Figure 1.11 (g) for both compression and tension experiments. Once a twining region is
formed, the compressive deformations allows for detwinning rather than forming partial
dislocations. Figure 1.12 (a) shows TEM images of a twinning region formed during ten-
sion that completely disappear once compression is initiated. The subsequent compressive
deformation acts in favor of detwinning. The trailing partial dislocation formed near the
twining boundaries eliminated its stacking fault removing the twin region. The MD sim-
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Figure 1.12: Reversible transitions by twinning and detwinning on gold NWs trough a cyclic tension and
compression deformation observed on experiments (scale bar 100 nm) and simulations. (a) in situ TEM images
captured during cyclic tension–compression. A single nanotwin was formed near the tensile grip (image 1 to 2)
at the first tensile load and then eliminated by detwinning during compression (image 2 to 3). Nucleation and
propagation of twins along the same slip system (image 4 to 5) was observed when subsequent tensile deformation
was applied. (b) Representation of the experimental loading. (c) Axial strain and lateral displacement obtained
during the tension-compression experiments. (d) Twinning and detwinning process using MD simulations. (e)
MD simulation images showing the glide of partial dislocations (red) and the respective twinned and detwinned
regions (green). Images from [LEE 14].

ulations support the preferential activation of the twinning and detwinning processes and
the reversible transition between the two mechanisms during cyclic tension–compression
loading. One can also mention the huge experimental work of Richter and colleagues
[QIN 15, CHE 17, CHE 20b, LAM 20] and the one of Cai from a modeling point of view
[MAR 04, KAN 07, PAR 09, WEI 12]

Nanoparticles (NPs) are another kind of nano-objects that can be used to investigate
nanoscale plasticity under compression. In contrary to pillars, they usually benefit of soft
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(a) (d)

(b) (e)

(c) (f)

Figure 1.13: Study of the size effect on Au samples. (a) SEM image of a faceted Au microparticle with top
face diameter in the range of 800 nm before and after compression. (b) Experimental stress-strain curves of Au
nano- and microparticles with different sizes. (c) Dependence of compressive stress on the top face regarding
its diameter. (d) Atomic configuration of one of the samples (4.9 nm height) used in the MD study. (e)
Strain-stress curves of the MD simulation for particles with height from 4.9 to 24.1 nm. (f) Linear dependence
of the yield stress with the particle height. Images from [MOR 11].

fabrication routes without FIB and are usually interdependent of a substrate. Mordehai
et al. have reported a size-effect in gold faceted micro- and NPs [MOR 11]. In this study,
experimental compression of Winterbottom shaped particles are performed in the SEM
at a constant nominal displacement rate of 2 nm/s. Figure 1.13 (a) shows the micro-
particles before and after deformation. The upper facet diameter of the particle varies
form approximately 200 nm to 1 µm. The size-effect on sample strength is illustrated in
Figure 1.13 (b) showing the increase of the yield stress with the reduction of the size. The
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dependence of the compressive stress in function of the top face diameter is reported to
scale with the particle radius R as R−n with n = -0.77 ± 0.16 as shown in Figure 1.13 (c).
MD was used with the aim to explain elementary deformation processes and justify stress
tendencies. Several atomic Winterbottom shape NPs (Figure 1.13 (d)) with height range
from 4.9 to 24.1 nm are deformed at constant displacement rate of 1 m/s. Figure 1.13
(e) shows the stress-strain curve for the different samples. An abrupt stress drop marks
the nucleation of dislocations from the surface. The simulation also shows a non brittle
behavior as observed in the experiment. Figure 1.13 (f) shows the linear dependence of
the nucleation stress with the particle height.

(a)

(b)

(c)

Figure 1.14: Analytical and experimental study of spherical Al2O3 NPs deformation. (a) Different stages during
an in situ TEM compression of a 96 nm diameter nano-sphere. Simulation using digital image correlation with
FEM (red line) and analytical using a Hertzian model for loading and Oliver and Pharr model during unloading.
(b) Map of the total equivalent plastic strain superposed to the contrast observed during experiment. (c)
Tresca stress comparison to the experimental observation of the first cracks direction (dotted line). Images
from [CAL 14].

Also, Calvie et al. have investigated at MATEIS the mechanical response of alumina
(Al2O3) ceramics nanospheres using in situ nanocompression inside the TEM [CAL 12].
Specimen with diameter size ranging from 40 and 120 nm were compressed at a controlled
displacement rate of 2.5 nm/s with and without thermal pre-treatment. The authors
report that the smaller nanospheres can withstand several plastic deformation without
failure. However a brittle behavior is reported for the particles with larger size. As a
result, a critical size of about 40 nm is found to delimit the brittle-to-ductile transition.
The same group also proposed a methodology to determine constitutive laws suitable
for the mechanics of alumina NPs [CAL 14]. In this study, they compressed alumina
nanospheres with diameter of 96 nm at a displacement controlled rate of 0.5 nm/s using
in situ TEM (Figure 1.14 (a)). Experiments were compared with finite-element method
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(FEM) simulations by using digital image correlation and reporting estimated values of
Young’s modulus and yield stress. This work also discussed the link between observed
Bragg fringes and possible plastic deformation events (Figure 1.14 (b)); The simulated
Tresca shear stress was shown to match the direction of the crack propagation observed
during the experiments (Figure 1.14 (c)).
Still at MATEIS, Issa et al. used in situ TEM and MD to compress MgO nanocubes
(NCs) [ISS 15, ISS 21]. The experiments are performed at controlled displacement rate
of 2 nm/s along the [001] direction. Three sizes are investigated 90, 120 (Figure 5.25
(a)) and 140 nm observing the well known increase of the strength with the reduction of
the size. Nucleation of dislocation were reported to occur at surfaces and edges of the
cubes. In parallel MD simulations were preformed at room temperature for dislocation
free NCs at smaller sizes (Figure 5.25 (b)) ranging from 4.2 to 12.7 nm. Compression
test were performed in the [001] direction with a displacement rate equivalent to 108

s−1 strain rate. Both the experiments and simulations show that MgO NPs can deform
up to extreme strain without cracking. MD simulations helped to interpret the surface
dislocation nucleation (SDN) deformation. The same group recently discussed the size-
dependent transition from SDN and starvation (samples lower than 200 nm) to bulk-like
dislocation multiplication (larger samples) in MgO NCs in situ experiments [ISS 21].

(a) (b)

Figure 1.15: MgO NPs deformation using in situ TEM and MD. (a) Stress-strain curve for two MgO NPs of 90
and 120 nm size deformed inside the TEM. Inset: TEM image of an SDN event corroborated by MD simulation.
(b) MD stress-strain curves of MgO NCs under compression. Images from [ISS 15].

Recently, Amodeo et al. used the nudged-elastic band (NEB) method to compute the
site-dependence of energy barrier for SDN in MgO NCs under compression (Figure 1.16)
[AMO 21a]. The authors computed maps of dislocation nucleation activation energy (and
nucleation radii) for the surface nucleation sites in MgO NCs deformed at 11 % strain.
They reported that the most favorable sites were at edges and corners of the specimen
as observed in [ISS 15]. Also, they have shown using the transition state theory (TST)
that dislocations were able to nucleate from regions located at the center of the lateral
surfaces when heating the sample up to intermediate temperatures. The nucleation energy
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database developed by Amodeo et al. will be used later in this study. About modeling NPs
mechanics, one can also mention the work of Wang [BIA 13, YAN 17, BIA 18] or the one
of Pizzagalli’s group [Bel 17, KIL 18, KIL 19]. Moreover, Amodeo and Pizzagalli recently
published a review article on the topic in which all details on the multi-scale modeling of
NPs mechanical properties can be found [AMO 21b].

(a) (b)

Figure 1.16: Dislocation nucleation in MgO NCs using NEB and TST, (a) Example of SDN energy barrier
as function of site localization at 11 % strain. (b) Energy map for SDN in MgO NCs projected on the more
probable nucleation centers. The gray colors shows the forbidden cites. Images from [AMO 21a].

The first part of this literature chapter evidences the “smaller is stronger” trend and the
super-plastic behavior currently reported in small-scale objects. Also, it is commonly ob-
served that surface nucleation is the mechanism ruling plasticity in the smallest defect-free
nano-objects due to a more intense effect of free surfaces when scaling down. In this con-
text, nanomechanical experiments can suffer of several drawbacks that impede trustworthy
mechanical characterization as e.g., surface roughness, misalignment or irradiation effects
[YU 15, HIN 09, ISH 97, MIA 17, NAG 15, MIC 08, DON 06]. Thus, they often require
simulations to be fully interpreted. Simulations allows for a precise control of defects and
avoid contamination during sample preparation (as reported in some experiments). In this
context, MD seems to be the best candidate to model nanomechanical tests as it allows to
model SDN processes as well as other deformation processes at the atomic-scale. However,
MD also carries limitations. The computational costs involved by MD simulations keep
the sample size limited to few ten nm while the strain rate is found to be particularly high
(>106 s−1). In the next section, we will focus on the other methodologies available in the
literature that allow for the modeling of mechanical properties accounting for surfaces as
required by the physics of small-scale experiments.
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1.2 Surfaces and dislocations at the nanoscale

As previously discussed, the mechanical properties of materials radically change when
decreasing size at the micro- and, then, at the nanoscale, due to the increase of the surface
over volume ratio. For instance, the surface atoms of a 25 nm edge size NC represents
8.5 % of the total number of atoms (simple cubic crystallography, lattice parameter 3 Å)
while it increases up to 42 % for a 4.2 nm sample suggesting that at small scales, the effect
of surfaces can not be negligible. In particular, surfaces are the source of image forces that
can strongly influence dislocation processes. Thus, any simulation method used to model
nano-objects should include a rigorous treatment of the surface effects. In this section, we
present some aspects on the effect of surfaces at the nanoscale as well as a review of the
simulation methods currently used to manage dislocation vs. surface interactions.

1.2.1 Surfaces and nano-objects

The surfaces of nano-objects can be the source of various physical properties different
from bulk. For example, the chemical reactivity or the atomic diffusion can be strongly
enhanced in nano-objects leading to specific applications e.g., in catalysis or lubrication
[ROY 09, CHE 19, DAI 16, RUB 17]. In the field of nanomechanics, surfaces influence
both the elastic and plastic properties. Liang and Upmanyu [LIA 05] used MS simulations
to study the elasticity of copper NWs oriented along [001], [110] and [111] crystallographic
directions (Figure 1.17). The authors attribute the changes (with respect to bulk) to the
nonlinear response of the NW core and the action of surface stress. In addition, they show
that the surface elasticity effects are moderated for NWs oriented along [001] and [110],
and negligible for those oriented along [111]. McDowell et al. performed MD simulations
on Ag NWs and have shown that factors as geometry and surface structure are responsi-
ble for the changes in elastic modulus observed with size reduction and may explain the
differences between experiments and computational trends [MCD 08]. On the other hand,
we have emphasized in the previous section how the surfaces play a role at the onset of
plasticity as being the source of the heterogeneous dislocation nucleation process. Still
in this context, image forces that apply to a dislocation close to an interface (surface,
GBs, etc.) is a long-time known aspect of the dislocation theory that takes all its sense
in nano-objects. As an example, Gryaznov et al. evaluate the critical size below which a
dislocation is dragged out from a small particle due to image forces [GRY 89]. As shown
in Gerberich et al., a rough calculation including a friction stress of 50 MPa for iron at
room temperature leads to a critical size of 400 nm below which a dislocation escapes due
to image forces [GER 17]. This simple calculation shows the key contribution of image
forces to NPs mechanics.

Also at small-scales, the sample preparation influences the dislocation microstructure
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Figure 1.17: Dependence of the Young’s modulus with strain for copper NW and bulk material using MD
simulations for samples oriented along [001] (a), [110] (b) and [111] (c). A longitudinal view of the [111]
oriented NW showing surfaces irregularities is at the inset of (c). Figure from [LIA 05].

and, with it, the mechanical properties of the material. Example of the effect of surface
passivation and its influence on thin-films strength is reported by Keller using in situ TEM
[KEL 98]. The authors discuss how the effect of surface may change the way a dislocation
glide and bend along a passivated surface. In [OH 09], the authors discussed the effect
of surface oxidation during the elongation of sub-micron aluminum single crystal using
TEM. They reported that during the escape, the first dislocations were stopped at the
surface due to the action of the oxide layer. Also, they explain that the dislocation den-
sity remains constant at strain rate of 10−4 s−1 in the contrary to the case of 10−3 s−1

what indicates the strain rate sensitivity of submicron crystals. The effect of the initial
dislocation microstructure on the strength of bulk materials was also discussed in Mg
crystals [LAV 75]. Jennings et al. also discussed the effect of FIB on sample preparation
and strength [JEN 10]. Both studies conclude that the mechanical response of nanoscale
crystals depends rather on the initial dislocation microstructure than on size, regardless
the fabrication method.

The TEM lamella case is maybe one of the best case-study were surface and sample
preparation face together at the nanoscale. Indeed, TEM observations require particularly
thin regions (few tens nm thin) to enable the matter penetration by the electrons. Thus,
one can expect the surfaces to play a key role influencing measurements for example when
measuring dislocation densities using TEM [LAV 75, KIE 11, OH 09].
Several models and approaches were developed to handle dislocation and surface inter-
actions: the classical image dislocation in semi-infinite space [HEA 53], the half-space
Peierls–Nabarro model [LEE 07, LEE 08], the Gosling and Willis Green’s function method
[GRO 70, FIV 96], the Lothe’s energy theorem [LOT 82], the superposition method based
on the Boussinesq problem [HAR 99, FIV 96], the infinite image dislocation series in thin
films [HAR 99] or the average image stresses method of Mori et al. [MOR 73]. All of them
applicable to linear isotropic media. More recently, Wu proposed a method to consider
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arbitrary defects in thin films using anisotropic elasticity [WU 12]. The classical image
stress method consist on replicating a dislocation beyond a free surface including a sec-
ondary stress function to cancel the remaining shear and normal stress, satisfying the free
surface conditions [HIR 82]. For complex dislocation configurations and boundary value
problems (BVPs), the image stress can be computed using FEM [Van 95] leading to “hy-
brid methods” coupling e.g., discrete dislocation dynamics (DDD) and FEM simulations.
Few of these methods are described in the following.

1.2.2 Modeling surface and dislocation interactions

As emphasized in previous sections, MD is naturally able to tackle surface of nano-
objects. However, it is restricted to relatively small samples and extremely elevated strain-
rates. In this thesis, we will focus on a mesoscale approach with the aim of opening new
routes to model nano-objects accounting for their surfaces on larger sizes and timescales.

The DDD method (that will be described in the Chapter 2) allows to compute dis-
location dynamics using the elastic theory as defined in a infinite continuum [VAS 06,
HUL 11, KUB 13]. It can therefore not solve boundary surface problems by itself. How-
ever, stress-free boundary conditions (BCs) can be addressed using DDD coupled with
an external elastic solvers as FEM or boundary elements methods (BEM). Two ap-
proaches are mainly known. The first one is the superposition method (SPM) proposed
by Van der Giessen and Needleman [Van 95] that will be discussed in details in the
next chapters. The second refers to the discrete continuous method (DCM) proposed
by Lemarchand and co-workers [LEM 99a, LEM 99b, LEM 01] that is based on the eigen-
strain formalism of Mura [MUR 87] and formally developed and used by Devincre and
collaborators [GRO 04, GRO 03, VAT 10, VAT 14] and Liu [LIU 09]. In addition, fast
Fourier transform (FFT) based methods are also more and more used in the community
[BER 15, BER 19, KOH 20].

1.2.2.1 The superposition method

Lubarda et al. [LUB 93] proposed to use numerical methods to solve BVPs of a dislo-
cation microstructure in equilibrium using the image stress correction concept of Volterra
[VOL 07]. The variational formulation of the SPM was later developed by Van der Giessen
and Needleman [Van 95] applicable to interface and voids and with the introduction of
displacement BCs corrections. Those two pioneer papers provide the basis of SPM as the
original coupling method between FEM (or BEM) and DDD simulations. The early im-
plementation of the image stress concept was limited to two dimensions. It was extended
to three dimensions by Fivel et al. [FIV 97, FIV 98] to model dislocation evolution in
nanoidentation. SPM has been widely applied later on and examples of application can
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be found in [ZBI 02a, ZBI 02b, ELA 08, LIU 09, ZHO 10, GAO 10, CUI 15]. Briefly, SPM
consists in using the stress and displacement field generated by dislocations from a DDD
simulation (i.e. computed using an infinite continuum) extracted at virtual boundaries
to correct BVPs using a FEM solver [Van 95]. Then, the elastic stress solved by FEM is
superimposed to the internal stress over the dislocations lines and used to change the cur-
rent microstructure along time. A detailed analysis about this method will be presented in
Chapter 3. Yasin [YAS 01] performs simulations on cubic aluminum sample with random
distribution of Frank-Read (FR) sources loaded at a strain rate of 10 s−1 in the [001]
direction and found that for this case the effect of the surface softens the sample. The
same result was obtained by Yan [YAN 04] as shown in Figure 1.18. SPM was successfully
used for several case studies. Nanoidentation simulations studies are reported by Fivel
and co-workers [CHA 10, FIV 98]), Mordehai and co-workers [ROY 19]. Studies in pillars
where thin persistent slip bands are observed in the work of Po et al. [PO 14].

Figure 1.18: Effect of surfaces on the stress-strain curve computed by DDD simulations for a cube (few micron
edge length) deformed with fix tensile strain rate of 10 s−1. The traction free conditions are achieved by
the introduction of a continuous array of prismatic loops covering the area of the surface. The simulation is
performed using one FR source located in the middle of the cube. 10×10, 16×16 and 20×20 refers to the
amount of loops used along the free surfaces. The curve with square symbols represent the case where no
traction-free BC was considered. Figure from [YAN 04].

1.2.2.2 The discrete-continuous method

In brief, the DCM is based on the work of Mura [MUR 87] which describes dislocations
as inclusions that generate homogeneous plastic strain fields called eigenstrains. DCM also
requires DDD that is used to compute dislocation glide from which the DCM computes
corresponding eigenstresses that directly deal with the boundaries. In contrary to SPM,
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no corrections of the BCs are thus required when relying on the DCM. In the DCM
method, the displacement field is obtained from the plastic strain field yielded by the
dislocations. It is computed using interpolation and homogenization (or regularization).
Stress interpolation is done in two steps. First, the stress at the Gauss points of the mesh
is transformed to a nodal stress using the pseudo inverse of the shape function. Then,
the nodal stresses are interpolated to the dislocations segment middle points. The stress
everywhere (σ) is related to the total deformation calculate at the mesh Gauss points
(εtn) and the plastic strain solution of the last DDD step (εpn−1) by the elastic modulus C
through equation 1.2.

σ = C(εtn − ε
p
n−1) (1.2)

Regularization is also performed in two steps. The slip produces by the dislocation
is extended over a slab of finite thickness to replace the real dislocation by a continuous
distribution of parallel infinitesimal dislocations. Theoretically, this is equivalent to sub-
stitute the dislocation line by a disinclination dipole of height equal to the slab thickness
[Esh 66]. The second step is to redistribute these homogenized amount of slip (tensorial
plastic shear) at Gauss points of the FEM mesh. This is done using the Orowan’s law
(equation 1.3 ) where ∆γ is the total shear increment, b the Burgers vector, V is the rep-
resentative volume and ∆S the area swept by the dislocation. It follows that the precision
of such method relies on the type of mesh, on the integration timestep of the numerical
solver and on the amplitude of the deformation increment.

∆γ = b∆S

V
(1.3)

Critical aspects of the DCM rely on the way the regularization method is applied and its
direct implication on the calculation of the image forces. Different regularization methods
were proposed for the DCM. Lemarchand et al. proposed a slight modification of equation
1.3 where the interception area of the previously mentioned slab with thickness h and the
elementary volume is calculated [LEM 01]. If each integration point is denoted by i then
∆γ is localized at each integration point by:

∆γ(i) = ∆V i
s /h

S
·∆γ (1.4)

With the term in the numerator being the effective area corresponding to the “ith”
integration point. Another modification was proposed by Vattre et al. using intercepting
spheres [VAT 14]. The difficulty of this approach arises from the fact that some swept
area may be included in two or more elementary spheres.

∆γ(i) =
S

(i)
sphere

S
·∆γsphere (1.5)
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Liu et al. proposed a different approach from the previous version using a weight
function w(i) at each integration point normalized by the contribution of the total num-
ber of integration points n [LIU 09]. The weight function is expressed as a function of
isotropic Burgers vector density function, based on the non-singular continuum theory of
dislocations developed by Cai et al. [CAI 06].

∆γ(i) = w(i)∑n
i=1w

(i) ·∆γ (1.6)

Finally Cui proposed a new method based on a modification to the Liu solution where
the weight function of each integration point is also normalized by the swept areas of each
elementary volume [CUI 15, CUI 16].

The comparison of these regularization methods is benchmarked in Refs [CUI 15,
CUI 16] considering a 40 µm length cubic crystal and an edge dislocation placed in the
middle of the crystal in the (010) slip plane with Burgers vector in the [001] direction at a
distance Z from the top surface (Fig 1.19 (a)). Isotropic elastic constants were considered
with shear modulus µ = 51 GPa and Poisson’s ratio ν = 0.37. Quadratic hexahedron ele-
ments with 20 nodes and 8 Gauss points are used with size L = 0.85 µm. The image force
induced by the top surface is calculated for different values of Z. Using DCM with all the
previous regularization methods a comparison is made regarding the SPM and an analyt-
ical solution (Fig 1.19 (b)). The results shows that the DCM method does not reproduce
correctly the image forces at region near the free surface while, for the same conditions,
the SPM offers a better result. Correct reproduction of the image forces using DCM can
be obtained refining the mesh at the outermost domains. This of course increasing the
computational time, mostly for a 3D problem. Cui used the hybrid method proposed by
Tang [TAN 06] where the singular part of the image stress is obtained by an analytical
solution and the non-singular part is calculated by the SPM. Tang’s method was used in
the DCM method to evaluate the image forces exerted by the left-free lateral surface when
the dislocation intercepts it. Comparison of the image force of the lateral free surface is
reported in Figure 1.20 (a) where the DCM is used with the regularization method pro-
posed by Cui and it is compared to the SPM and the analytical solution. A comparison
of the DCM using Tang hybrid proposition for image force calculation as compared to the
normal DCM is shown Figure 1.20 (b). The use of Tang formulation allow for the better
calculation of the image forces whiting the DCM approach.

1.2.2.3 Fast Fourier transform based method

FFT based method for mechanics of materials was originally developed by Moulinec
and Suquet to allow for fast computation of the local response in composite materials
[MOU 94, MOU 98]. Lebenson and coworkers latter extended the method to viscoplas-
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(a) (b)

Figure 1.19: Benchmark of the different regularization methods proposed for the DCM. (a) Simulation setup
made of a square box with an edge dislocation along the [100] direction. (b) Image forces computed by DCM,
SPM and analytical methods for different dislocation vs. free surface distance Z. The SPM reproduces better
the analytical solution. Figure from [CUI 16].

(a) (b)

Figure 1.20: Image stress calculated form the left free surface (Figure 1.19 (a)). (a) image stress comparison
of the DCM method using Cui regularization regarding the SPM and the analytical solution. (b) comparison of
the DCM using Cui and Tang hybrid proposition. Figure from [CUI 16].

tic [LEB 01] and elasto-viscoplastic [LEB 12] polycrystal simulations. The FFT method
solves the mechanical equilibrium equations in the Fourier space assuming that the me-
chanical fields are periodic in the three directions. The strain field calculated in the
Fourier space is traduced into the real space using the inverse discrete Fourier transform.
Applications of FFT include approaches where dislocation lines are not tracked individu-
ally such as the level-set method [XIA 03] and phase-field approaches [WAN 01, HUN 11].
The two previous method account for dislocation elastic interactions but intrinsically fail
at describing dislocation contact reactions such as the junction formation. Using FFT,
Capolungo and collaborators improved the efficiency of the DCM [BER 15]. In this case
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(b) (c)

(a)

Figure 1.21: DCM-FFT study on modeling TEM lamella and surface-effects on dislocation microstructure in
metals. (a) Sample preparation starting from the periodic cell (left) and further thin film size reduction and
relaxation up to 100 nm thickness (right). (b) Dislocation retention fraction for each material after consecutive
slicing. (c) Dislocation retention as a function of the orientation susceptibility. Figure from [KOH 20].

the stress obtained in the Fourier space contains long-range elastic interactions. It is also
demonstrated that the approach allows for the treatment of anisotropic elasticity with
similar computational costs than that of isotropic elasticity. In general, the introduction
of the FFT-based method into the DDD framework improves the computational cost of
the simulations.
The DCM-FFT approach was used to study the effect of the image stress in TEM ex-
perimental conditions [KOH 20]. Indeed, TEM lamella preparation can change the stress
state associated with the traction-free conditions at the free-surfaces and change the dis-
location microstructure. To investigate this problematic, the authors considered several
samples with different crystallographic structures: FCC (Al), BCC (Fe), hexagonal closed-
packed (HCP) (Zr, Mg). The virtual sample preparation relies on forming a cubic box
of lateral size from 620 to 720 nm with an initial dislocation microstructure distributed
on the various slip systems. Few hundred MPa were applied in order to activate the slips
systems and promote dislocation multiplication before the load was removed to allow sam-
ple relaxation down to zero stress. This latter step is presumed to generate a simulation
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configuration comparable to the bulk-relaxed conditions in the experiment. At this stage,
the computed dislocation density varies from 3 × 1013 to 3 × 1014 m−2. Virtual material
slices were generated leading to thin films of 500 nm periodic along x and y with two
free-surfaces perpendicular to z. Under these conditions, the sample was also relaxed in
silico and the dislocation density was measured again. This three steps (slice, relaxation
and dislocation density measuring) were repeated systematically thickening the virtual
lamella down to a thickness of 100 nm. Each time, an amount 100 nm was removed as
shown in Figure 1.21 (a). The dislocation retention fraction is computed as the ratio of
the dislocation density in the lamella after each reduction step and the initial dislocation
density (Figure 1.21 (b)). For each material, the dislocation reduction represent a 30
to 40 % regarding the bulk microstructure. Also the dislocation retention regarding the
crystal orientation seems to be slightly larger for HCP systems as shown in Figure 1.21 (c).

1.3 Conclusion

In this chapter, we have seen that the mechanical properties of materials were strongly
influenced by size leading to the well-known paradigm “smaller is stronger”. The different
phenomena related to small-scale plasticity are generally, at first, studied using experimen-
tal techniques such as in situ TEM or SEM. However, computational methods represent
a fast and cheaper way to characterize material properties and elementary-deformation
processes at small-scale. While MD is commonly used in parallel to experiments as a
complement to help to interpret the different processes of deformation, it shows signifi-
cant limitations regarding the sample size an strain rate. DDD simulations allow to model
larger sample sizes and strain rates more comparable to those obtained in the experiments.
However, several limitations including BC (often limited to periodic) and the non-ability
to correctly account for free-surface effects are prohibitive for small-scale mechanics simu-
lation purposes. Some improvements can be noticed including the hybrid method proposed
by Tang et al. based on the use of the Yoffe analytical solution for straight dislocation
intercepting a free surface [YOF 61, TAN 06]. Weygand et al. also proposed a pseudo-
mirror method to account for the image stress that will be detailed in the next chapters
[WEY 02]. In our nanomechanics context, another limitation of DDD codes is that they
usually do not allow for a proper dislocation nucleation process. A nucleation algorithm
can be integrated to account for the statistical nature of dislocation nucleation but still
with some limitations when compared to MD. We will also come back on this aspect later
in the manuscript. Finally, DDD generally assumes homogeneous applied stress what
definitely restricts sample shapes to be modelled and is not in accordance with classical
nanomechanics experiments. One solution is to develop a modeling framework including
simulation conditions comparable to those of experiments (sample size and strain rate)
and accounting for surfaces effects using e.g., a DDD-FEM method such as the SPM or
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Conclusion

the DCM. It has been shown that SPM is particularly suited to solve the influence of free
surface on the dislocation miscrostructure at costs of a relative easy coupling implementa-
tion. As we will show latter, the SPM only consists in interchanging data arrays at each
simulation timesteps without changing drastically neither the FEM or the DDD workflow.
The use of a DDD-FEM coupled method allows not only to simulate samples with complex
shapes but also to perform various kinds of experiments where the sample need to be tilted
or rotated as e.g., in the case of nanoindentation studies within the small perturbation
approach [CHA 10]. Using a FEM elastic solver, one can compute stress concentrations
and possibly predict dislocation nucleation events as e.g., in Ref. [ROY 19].

During the PhD, we have developed a tool called El-Numodis that relies on the cou-
pling between the DDD nodal code Numodis [DRO 14, SHI 15] with the Elmer FEM
solver [MAL 13] using the SPM as proposed by Needleman. In the next chapter, we will
introduce the main aspects of both DDD and FEM elastic solver simulations as well as
El-Numodis parent codes: Elmer and Numodis.

Chapter 1: to remember
• Mechanical properties of materials at the micro- and nanoscale differ from those of

their bulk counterpart.
• A general “smaller stronger” trend is observed when size scales down.
• At the nanoscale, the dislocation multiplication process is progressively replaced by

a dislocation nucleation/starvation process.
• Currently, the main method used to characterize small-scale mechanics of materials

are in situ transmission electron microscopy and molecular dynamics but both of
them rely on different spatial and temporal scales.

• The influence of surfaces on the mechanical and dislocation properties can not be
neglected at the nanoscale.

• Coupling methods (e.g., between discrete dislocation dynamics and finite elements)
can provide a multi-scale framework to investigate nanomechanics issues taking into
account surfaces.
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Chapter 2

Numerical methods and parent
tools

In this thesis, we develop a multi-scale modeling tool called El-Numodis that relies on
the superposition method to solve a combination of dislocation dynamics and boundary
value problems. The development of such tool requires basics about the physical problems
involved as well as some hints about computational implementations and methodologies.
Numodis [DRO 14, SHI 15], a nodal based discrete dislocation dynamics software, and
Elmer [MAL 13], a multi-physics open source finite-element software, are used at the
roots of El-Numodis. This second chapter starts by a selective introduction to dislocation
dynamics focusing on the various kinds of implementations, details about boundary condi-
tions and a description of short-range dislocation-dislocation interactions. Then, Numodis
specific features are presented.
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2.1 Generalities about discrete dislocation dynamics

The DDD simulation is used to investigate plasticity at sizes between the atomic and
the macroscopic scales. Simulation basics rely on integrating dislocation displacements
using the elastic theory, i.e. dislocations are described as immersed in an infinite elastic
medium while the plastic strain is derived from the area swept by the dislocations. The aim
of DDD simulations is to investigate plastic deformation problems and provide outcomes
such as stress response and dislocation microstructure evolution at the mesoscale using
pre-defined conditions like material elastic properties, starting dislocation microstructure,
dislocation mobility law, deformation conditions (imposed strain-rate, creep) and temper-
ature. Specific dislocation processes such as cross-slip, junction formation or climb can be
taken into account depending on the complexity of the derived model.
For simple cases when only one or few dislocations are studied, it is possible to find a
mathematical solution for the forces acting on the dislocation lines and predict their fu-
ture evolution. When several dislocations are accounted, analytical predictions are more
complex to handle. Indeed, each dislocation portion generates a stress field that impacts
all the other surrounding dislocations within the simulation domain [HIR 82]. DDD was
developed to tackle this kind of issue and describe plastic deformation and dislocation
microstructure evolution at the mesoscale.
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Generalities about discrete dislocation dynamics

2.1.1 Nodal and lattice-based approaches

DDD codes can be classified in two kinds regarding the dislocation line discretization,
i.e. the lattice-based (also called segment-based) and nodal-based approaches (Figure 2.1).
In lattice-based codes, a grid of points is predefined inside the simulation cell. Based on
the grid structure, a curved dislocation line is divided into segments of constant line length
and character and restricted orientations (e.g. 4 directions for edge/screw models). The
motion of the dislocation is made perpendicularly to the segment line i.e., the degree of
freedom of the simulation is imposed by a list of segments and vectors.
In a nodal-based code, curved dislocation lines are discretized using nodes and not seg-
ments, explicitly. Nodes are interconnected by elements with no limitation regarding their
orientation. The nodal connection is performed by shape functions. In the simplest case,
a linear shape function connects two nodes using a straight line. This approach allows for
a more detailed description of curved dislocations when compared to the segment approach.

Here is a classical DDD workflow:
• Dislocation discretization
• Force/stress calculation
• Dislocation velocity and hypothetical displacement
• Obstacle management
• Dislocation displacement

Nodal representationSegment representation
(a) (b)

b b

Figure 2.1: DDD Dislocation line discretization, (a) lattice-based approach where the dislocation line is
discretized into segments (edge/screw model), (b) nodal-based approach with a discretization of the dislocation
into curves of various orientation with respect to the Burgers vector.

Examples of lattice-based codes are microMegas [DEV 11], developed by Devincre and
co-workers (LEM, France) and Tridis developed by Fivel (SIMaP, France) and collabora-
tors [FIV 96, FIV 97]. Among their specificities, microMegas uses edge, screw and mixed
segments for dislocation discretization while Tridis in the other hand relies on an edge-
screw model only. Another lattice-based codes is MobiDic [MAD 13] developed by Madec
(DAM, CEA, France). On the other hand, Paradis is maybe the most used nodal code
around the world [ARS 07]. It is developed at the Lawrence Livermore National Labo-
ratory and is currently maintained by Arsenlis and collaborators. Details about Paradis
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Chapter 2 – Numerical methods and parent tools

can be found in Ref.[VAS 06]. Another example of nodal code is micro3D developed by
Yasin and collaborators [YAS 01]. In this thesis, El-Numodis will rely on Numodis that
is developed by Dupuy and collaborators at SRMA, CEA (France). Further details about
DDD codes and implementations can be found in Ref. [KUB 13].

2.1.2 Stress and dislocation velocity

Whatever the discretization model used, the effective shear stress τeff is computed at
the middle of all dislocation segments, at each DDD time step. Each segment is then
translated perpendicular to its line direction by a distance v ·dt, where v is the dislocation
velocity proportional to τeff . Dislocation velocities in general can be described as a
function of several variables (drag forces, applies forces, temperature, enthalpy, etc.). In
the simple viscous case, the dislocation velocity follows a linear relation:

v = τeff .b

B
(2.1)

with B the drag coefficient. τeff can be computed as the contribution of various stress
components including the projection of the Peach-Koehler force τpk, the line tension τlt

and the lattice friction τPeierls.

τeff = τpk + τlt − sign(τpk + τlt) · τPeierls (2.2)

Note that some DD codes also integrate an image force term in the effective stress calcu-
lation which is otherwise generally computed using SPM or DCM. The projection of the
Peach-Koehler force in the gliding plane is defined as:

τpk = F pk · g
b

(2.3)

with g a glide unit vector and F pk the Peach-Koehler force given by:

F pk = (σ · b)× ξ (2.4)

Where ξ is the dislocation line vector and the stress field σ deduced from the external
stress σapp, internal stress σint. σapp is generally set homogeneously to each dislocation
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Generalities about discrete dislocation dynamics

segment or can be derived from a FEM simulation. On the other hand, the internal stress
refers to the stress field produced by all dislocations and is the main purpose of DDD
simulations.
In the case of curved dislocations, the internal stress is defined by equation 2.5 (e.g.,
Ref.[HIR 82]). We will see in the following that DDD codes often rely on simplified
expressions.

σintαβ = µ

8π

∮
∂i∂p∂pR[bmεimαdx′β + bmεimβdx

′
α]

+ µ

4π(1− ν)

∮
bmεimk(∂i∂α∂βR− δαβ∂i∂p∂pR)dx′k

(2.5)

The Peierls stress τPeierls (also known as the lattice friction stress) is the stress needed
to move a dislocation at 0 K. It is commonly expressed as a fraction of the shear modulus
µ; for instances e.g., around 10−5 µ in FCC metals.
Finally, the line tension τlt is the result of the self stress field that every dislocation produce
per unit length. It is related to dislocation energy minimization reducing their length.

τlt = µb

4π(1− ν)R (1− 2ν + 3ν cos2 θ)(ln( L2b)− ν cos(2θ)) (2.6)

were ν the Poisson ratio, R is the curvature radius and θ the angle between the the dislo-
cation line and the Burgers vector.

After the computation of τeff on dislocation nodes or segments, DDD codes usually
compute dislocation velocity and integrate dislocation displacement along time. More
complex dislocation mobility law can be taken account including e.g. thermally-activated
mobility laws [PO 16].

2.1.3 Boundary conditions

Weinberger categorizes BCs used in DDD simulations into three main groups [WEI 16]:
infinite, periodic and heterogeneous BCs (Figure 2.2). The simplest ones are the infinite
BCs where the dislocation lines are considered to be embedded in an infinite medium.
Generally, the stress produced by dislocations when using infinite BCs are solved consid-
ering homogeneous and infinite medium what makes simulations with infinite BC easy
to implement. In this kind of model, the dislocation lines are allowed to move up to a
certain distance far from any existing boundary what induces massive central processing
unit (CPU) costs. So, simulations with infinite BC are used to idealized test cases.
Periodic boundary conditions (PBCs) mimic an infinite medium by replicating the simula-
tion supercell in all directions. The replicas surrounding the main simulation cell are called
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Chapter 2 – Numerical methods and parent tools

images. Using PBCs is another way to model infinite medium but with a bias associated
to the replicated dislocation density. In this case however, any configuration or pattern
with characteristic length larger than the supercell cannot be captured. The driving forces
of dislocations are computed considering the total stress due to all dislocation inside all
the replicas. In practice and avoiding high computational cost, only a limited number of
replica is considered.
Heterogeneous BCs rely on interfaces and require stress correction, they will be discussed
later.
Additional BCs can be found in the literature including free-BCs where dislocation are al-
lowed to escape the sample (also called permeable-BCs), fixed-BCs where dislocations are
stored at the boundary mimicking an impenetrable GB or even rotated-BCs introduced
by Madec to avoid dislocation auto-annihilation [MAD 04]. The previous description of
BCs can be combined e.g., it is possible to model a thin film using periodic BCs in two
directions and free-surfaces in the other (Figure 2.2 (c)). Numodis accounts for rotations
as well as periodic, fixed and permeable BCs.

Figure 2.2: BCs in DDD. (a) infinite boundary conditions. (b) periodic boundary conditions. (c) heterogeneous
boundary conditions and (d) a bimaterial interface in an infinite medium. Image from [WEI 16].

2.1.4 Initial configuration and loading modes

Most of DDD simulations rely on an initial dislocation microstructure. Depending on
the target problem, the starting dislocation microstructure can influence simulation out-
comes. Usually, several dislocation objects can be used to define the starting microstruc-
ture including FR sources but also dislocation loop or infinite dislocations. In this work,
we have developed a nucleation routine that allows for homogeneous or heterogeneous
dislocation nucleation events. This routine can be used to prevent the use of pre-existing
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Generalities about discrete dislocation dynamics

dislocation microstructure. We will come back on that later.
Several control modes are currently available in DDD codes. Simulation are generally
controlled either applying a stress or a strain-rate. The stress control is quite straightfor-
ward as we have seen that stress calculation is one of the main item of DDD workflows.
However, it might be sometimes required to run simulation at constant strain-rate as e.g.,
to mimic experimental conditions of deformation. In this context, DDD codes rely on an
interplay between the plastic strain as computed by the total area swept by dislocations
and the total strain (elastic + plastic). Loading modes currently available in Numodis
and El-Numodis will be introduced later.

2.1.5 Dislocation short-range interactions

Contact reactions between dislocations can lead to stable configurations that constitute
barriers to further dislocation motion [KUB 13]. Those barriers significantly influence the
evolution of the dislocation microstructure and thus affect the mechanical properties of
materials. When two dislocations gliding in non-parallel planes interact, few potential re-
actions may take place. First, dislocations can cut through each other and continue their
movement (e.g., when dislocation have 90° Burgers vectors). In fact, they produce steps
on the lines with Burgers vector size known as jogs [NIU 17] (Figure 2.3 (a)). The second
option is the zipping of the two dislocations called junction (Figure 2.3 (c)). Dislocation
junctions can be destroyed if stress is increased locally. Dislocation can also annihilate
(Figure 2.3 (b)) if they have same Burgers vectors [KUB 92]. This reaction is called a
collinear reaction [MAD 03]. Crossed-states also exist. The interaction between two dis-
locations is controlled by the Frank’s law and the Kroupa equation [HIR 82]. The Frank’s
law suggests that two interacting dislocations with burger vectors b1 and b2 may form
a junction if b2

1 + b2
2 > (b1 + b2)2. On the other hand, the Kroupa equation relies on

the ability of the two dislocations to attract or repel each other. A formed junction can
also interact with a third dislocation (Figure 2.3 (e)). In this case, the arms of the third
dislocation join the extreme of the zipped junction forming pinning points leading to the
creation of a FR source [BUL 06]. Dislocation dipoles can also form when dislocations
glide in close parallel planes [TET 62].

Generally, DDD codes detect dislocation contact reactions before they happen via an
obstacle detection subroutine. Then, either the elastic theory or local rules are used to to
generate the induced reaction. In Numodis, a split algorithm is run at the same time than
velocity calculation to determine the evolution of all physical nodes connected to multiple
segments and predict interactions. The main steps of the Numodis workflow are detailed
in the following.
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(a) (b)

(c)

(d)

(e)

Figure 2.3: Examples of short range dislocation interaction. (a) Jog formation when two dislocations with
Burgers vectors oriented at 90° interact together. (b) collinear reaction generated by two dislocations with same
Burger vectors but opposite line directions. (c, d) junction formation between two interacting dislocations. (e)
multi-junction formation (glissile junction case leading to a FR source). Figures from [KUB 13].
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Introduction to Numodis

2.2 Introduction to Numodis

Numodis [DRO 14, SHI 15] is a DDD code developed by Dupuy (SRMA, CEA, France)
and collaborators. It is written in object oriented C++ and its workflow is described in
Figure 2.4.

Numodis initialization

Discretization

Stress calculation

Force calculation

Velocity calculation

Discrete events

f = ( b ) ξ. Xσ

v = M(f)

Figure 2.4: Scheme of the main operations performed by Numodis at each simulation timestep, after the
initialization of the code.

2.2.1 Nodal forces and energy

In Numodis, the movement of dislocations is related to the calculation of nodal forces
fi. Nodal forces are the response of dislocation to internal or external stresses. In nodal
representation, the degrees of freedom (DOF) of a node relies on its position ri, the
dislocation bi and fi varies as the negative gradient of the node’s energy,

fi = −∇(Etot(ri, bi)) (2.7)

The total energy of the node Etot is the sum of the elastic energy Eelastic and the core
energy Ecore. Eelastic for an infinite straight dislocation in case of isotropic elasticity is:

Eelastic = µb2

4π(1− ν)(1− ν cos2
θ) ln(R0

r0
) (2.8)
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R0 and r0 are the outer and inner radii of the dislocation, respectively. As an approxima-
tion in Numodis, the core energy is considered as a fraction of Eelastic:

Ecore = αcore
µb2

4π(1− ν)(1− ν cos2
θ) ln(R0

r0
) (2.9)

Then, the nodal force can be rewritten as:

fi = f elastici + f corei (2.10)

f corei is computed using the derivative of the core energy. For f elastici , a virtual work ar-
gument is used rather than Eelastic derivative. f elastici is computed as the weight average
of the Peach-Koehler force acting on the dislocation segment connected to the nodes and
is represented as the line integral along all the segments connected to the node i.

f elastici =
∫
c
fpkNi(x)dL(x) (2.11)

Where Ni(x) is a linear shape function defined for each node i connected to a node j.

Ni(x) = ‖x− rj‖
‖ri − rj‖

(2.12)

In Numodis, fpk relies on the internal stress calculation (contribution of dislocation) and
the applied stress. During this thesis, the Weygand method [WEY 02] to handle disloca-
tion image forces during fpk calculation was developed and can now be used in standalone
Numodis (it will be discussed further later). f corei corresponds to a part of the previous
Ecore (typically a few percents) and is explicitly declared as a parameter in Numodis. Fric-
tion forces (overdamped dislocation glide) and static frictional forces are both considered
when computing velocities. They are both embedded into a variational Galerkin approach
as explained in [VAS 06].

2.2.2 Equation of motion and time integration

In the overdamped regime where the dislocation velocity is defined by forces, a first
order differential equation of motion is solved leading to a mobility function M ,

vi = M(fj) (2.13)
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Introduction to Numodis

the mobility law vi can be as simple as the viscous glide model (equation 2.1) or more
complicated (e.g., thermally-activated mobility law). In any case, it is possible to define
a viscous matrix K for the dislocation nodes thanks to the line discretization and the
principle of virtual work.

KV = F (2.14)

Where F is the nodal force and V the nodal velocity to be determined. The viscous matrix
K can be decomposed in several sparse matrix thanks to the node connectivity (to speed
up the calculation). In general, the nodal viscous matrix can be build using the previous
described shape functions and the drag coefficient B using the following equation

Kij =
∮
Ni(l)Nj(l)B(l)dl (2.15)

Owing the nodal forces and the mobility model, the equation of motion of the nodes can
be solved,

vi = dri
dt

= gi(rj) (2.16)

where gi implicitly relies on both the nodal force and the mobility model at node i.
Such first order ordinary differential equation can be integrated using a simple numerical
integrator as the explicit Euler forward method:

ri(t+∆t) = ri(t) + vi∆t (2.17)

The precision of the computed velocity depends on the integration timestep ∆t. Large ∆t
will affect the stability as well as the precision of the final result. Some other methods can
be implemented as the implicit trapezoidal, and the explicit Euler-trapezoid. The latter
uses the predictor and corrector operators differences to perform an auto-correction of the
timestep ∆t.

2.2.3 Dislocation stress field calculation

Dislocations are characterized by stress and displacement fields that distort the crystal
around them. The stress field generated by an edge or a screw dislocation can be cal-
culated in Numodis using various derivations of the elastic theory including the classical
formulation exposed in the Hirth and Lothe (HL) book or Li formalisms [LI 64, HIR 82].
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Both formulations describe dislocation stress field everywhere except at the origin of the
dislocation core (r = 0). This issue was recently solved by Cai and the non-singular
dislocation theory that was also implemented recently into Numodis [CAI 06]. For the
screw character, the non-singular theory stress field (line oriented along z) is given by,

σnsxz = − µby

2πρ2
a

(1 + a2

ρ2
a

) (2.18)

σnsyz = µbx

2πρ2
a

(1 + a2

ρ2
a

) (2.19)

σnsxx = σnsyy = σnszz = σnsxy = 0 (2.20)

while the edge stress field (line oriented along z) is given by,

σnsxx = − µby

2π(1− ν)ρ2
a

[1 + 2(x2 + a2)
ρ2
a

] (2.21)

σnsyy = µby

2π(1− ν)ρ2
a

[1− 2(y2 + a2)
ρ2
a

] (2.22)

σnszz = − µbνy

2π(1− ν)ρ2
a

[1 + a2

ρ2
a

] (2.23)

σnsxy = µbx

2π(1− ν)ρ2
a

[1− 2y2

ρ2
a

] (2.24)

σnsxz = σnsyz = 0 (2.25)

with ρa =
√
x2 + y2 + a2 and a an arbitrary constant associated to the dislocation core

width. The parameter a should be small but always larger than 0. In the case of a < 0,
the Cai equations are identical to the classical singular solutions reported in HL book.

2.2.4 Dislocation displacement field calculation

In Numodis, the formulation of Barnett and collaborators [BAR 85, BAR 07] for a
triangular dislocation loop is used (Figure 2.5) to compute the dislocation displacement
filed u.

u(X) = − b

4πΩABC −
1− 2ν

8π(1− ν) [fab + fbc + fca] + 1
8π(1− ν) [gab + gbc + gca] (2.26)
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glide plane

u(X)

n

b

ΩABC

A

B

C

X

λC

λB

λA

RA RB

RC

Figure 2.5: Triangular dislocation loop ABC used to calculate the displacement field u at point X with Barnett
formulation considering the contribution of the solid angle ΩABC .

with ΩABC the solid angle from point X. fab,fbc,fca and gab, gbc, gca are given by:

fij = (b× lij) ln |Rj |
|Ri|

1 + λj · lij
1 + λλλi · lij

)
(2.27)

gij = [b · (λi × λj)]
λi + λj

1 + λλλi · λλλj
(2.28)

with the indices i, j referring to A,B or C. The vectors for each point A,B,C to X are
expressed by the quantities RA = A−X, RB = B −X, RC = C −X.
The solid angle associated to the area made by the triangle ABC can be calculated with
the formula:

Ω = −4 · sign(λA · n) arctan

√tan(s2) tan(s− a2 ) tan(s− b2 ) tan(s− c2 )

 (2.29)

With:

s = a+ b+ c

2 (2.30)

λA = RA

‖RA‖
(2.31)

a = arccos(λB · λC) (2.32)
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b = arccos(λA · λC) (2.33)

c = arccos(λA · λB) (2.34)

The Barnett solution for the dislocation displacement field provides more flexibility
that the classical ones found in HL book. In particular, there is no restriction regarding
to b to be strictly in the habit plane of the loop i.e., the solution remains valid when b has
a prismatic component. Bromage et al. show that any dislocation loop can be split into
finite triangles [BRO 18]. Thus, it is possible to construct triangles with sides matching
a line within the dislocation loop using any point outside of the loop. While it does not
solve the case of an isolated dislocation segment, the Bromage argument makes Barnett
solution usable to compute the displacement field of any closed dislocation.

2.2.5 Dislocation meshing

In Numodis, dislocation glide induces an increase/decrease of the distance between
nodes. Nodes are added or deleted using two algorithms (called “merge” and “split”)
depending on the two neighbor nodes distance L (Figure 2.6).

L>
L m

ax

Node added

L<
L

m
in

Node removed

Merge

Split

(a)

(b)

Figure 2.6: Split and merge algorithms used in Numodis to optimize the dislocation discretization. (a) If the
distance between a pair of consecutive nodes L gets lower than a minimum distance Lmin the merge algorithm
will remove a node. (b) When the distance between any node get greater than Lmax, a new node is inserted
at the middle point by the split algorithm.

The parameters Lmax and Lmin define the conditions when a node is added or removed.
If L > Lmax a node is inserted at the middle distance between the two interconnected nodes
increasing the DOF. In the contrary, a node is removed if L < Lmax reducing the DOF.
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Lmax > 2Lmin is recommended to optimize simulation outcomes.
The “split” algorithm is run during the nodal velocity calculation and dislocation contact
reactions. “Splittable” nodes are defined as not-pinned nodes with at least three segments
connected. A check for “splittable” nodes and their possible evolution is performed at
each timestep.

The split algorithm workflow can be described as follow:
1. Detect all the “splittable” nodes.
2. Determine all the possible outcomes of each “splittable” node.
3. Calculate force and velocity of all possible split option per “splittable” node.
4. Calculation of the power dissipation for each split option and consistency verification.
5. Choose the split option with the higher energy dissipation.

The previous algorithm also includes geometrical, crystallographic and energetic aspects.
A similar remeshing and collision-detection approach is implemented in Paradis [ARS 07].

2.3 Introduction to Elmer and the finite-element method

The purpose of FEM is to solve a BVP using sets of partial differential equations whose
analytical solution is too complex (or impossible) to be solve analytically [LAR 13]. FEM
uses space and time discretization to obtain numerical approximate solutions of the BVP
with a certain level of accuracy. The FEM workflow is mainly based on pre-processing,
processing and post-processing routines. During pre-processing, the geometry of the prob-
lem and the discretization are defined. Usually, this step is done with the help of a graphic
interface to define domain name, mesh type, etc. Then, the matrix formulation of the prob-
lem is done during the processing as well as the integration of the initial and boundary
conditions together with the assembly of the global stiffness matrix. Post-processing is
performed once the solution of the BVP is found. It includes the calculation of secondary
quantities (e.g., strain, stress) from the solution of the primary quantities (displacements).
Also, interpolations from nodal to local (within an element) values are formally done at
this stage.

2.3.1 Elmer software

Elmer is an open-source and parallel FEM software developed by Räback and col-
laborators at CSC-IT, Espoo (Finland) [MAL 13]. Elmer can be used to solve various
kinds of differential equation sets that can be coupled in a generic manner making Elmer
perfectly adaptable for multi-physics simulations. It is mostly implemented in modern
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Fortran (about 75% of the code) and C/C++ providing a high-performance simulation
framework. Elmer can be used for various kinds of applications including:

• Heat transfer
• Fluid mechanics
• Species transport
• Structural mechanics
• Acoustics
• Electromagnetism
• Microfluidics
• Levelset methods
• Quantum mechanics
• Mesh movement
• Particle tracker.

Elmer is made of several building blocks (ElmerGrid, ElmerSolver, etc.) each dedicated
to a specific task (Figure 2.7). The code also allows the use of external solver for specific
cases, BC or for post-processing convenience. It is continuously maintained and is often
updated with new features provided either by the developer team or by the user com-
munity. Actually, Elmer simulations are performed following the classical aforementioned
FEM workflow as shown in Figure 2.7 (a) i.e., pre-processing (ElmerGrid, ElmerGUI),
solver(ElmerSolver, Elmer-mpi) and post-processing (ElmerPost or external routines) and
each component can be used independently. A user interface (ElmerGUI) that can be used
during most of the simulation is also available.

During pre-processing, Elmer creates or imports the simulation domain and the mesh.
It can be done in different ways with the help of some external softwares (Gmesh, NetGen,
OpenCanscade, Salome, FreeCAD, Comsol multiphisics) or directly by creating a .grd file
for simple 2D and 3D samples. To perform a simulation, Elmer requires four files as inputs:
mesh.header, mesh.elements, mesh.boundary, mesh.nodes. Those files are written using
the Elmer format. Among its various applications, ElmerGrid can convert several mesh
formal files to the native Elmer format. Also it can be used to increase and evaluate mesh
quality as well as create mesh partitions for parallel simulation together with METIS, a
pre-processing tool of Elmer (Fig. 2.7 (b)).
The processing part involve the use of ElmerSolver. It is the main step of the FEM
simulation in which several actions are performed including geometry reading, assembly,
solution and saving. Here, Elmer reads a .sif file where several information are stored
including:

1. Header: Location and name of input mesh folder, output folder path and name. An
optional argument allows for checking keywords if external definitions are present
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(a) (b)

Figure 2.7: Elmer workflow. (a) Elmer workflow using its own interfaces for pre-processing and processing
(ElmerSover). Paraview can be used for post-processing. (b) Elmer interacting with external pre-processing
tools for a better meshing and domain partitioning when parallel calculations are realized.

withing the .sif file.
2. Simulation: Define the kind of coordinates (spherical, cartesian, etc.) and dimensions

(2D, 3D), simulation type (steady state, transient, etc.), number of steps of the
simulation, saving frequency and the name of the saving files.

3. Body: The physical model to be solved. Elmer can be used for multi-body (with
different material properties and/or physics solver) simulations. Here is specified
the relative number of bodies together with their associated equations and material
properties. The body force (gravity, electric and magnetic fields, etc.) if present,
initial conditions and BCs are also defined here. In the case of multi-body simulation,
the body section is repeated as much as the total number of bodies present in the
simulation.

4. Solver: The solver section set the kind of equation or physical problem to be solved
as well as when they are solved (never, always, as well as before/after time-step,
simulation or saving). Here is also declared the solution method as well as precon-
ditions, stability criteria and breaking conditions. It is also possible to implement a
number of external solver here to account for any new physics not included in Elmer
or to performs some function as the assembly, interpolation or field conversion. El-
Numodis particularly uses this property of Elmer that is able to call external solver
or library without changing the source code.

5. Equation: Refers to the set of solvers for a body. Here some options can be set as
well as explicitly ask for calculation of some variables. Also here is specified the
number of active solvers to account for in multi-body simulations.

6. Body force: This section is declared if body forces are considered in the simulation.
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Also direction, initial condition or source can be defined.
7. Material: Here is where materials parameters are declared. Different material sec-

tions should be declared if a multi-body simulation is run. the different parameters
to be set are: density, Poisson ratio, Young’s modulus, viscosity, heat conductivity,
heat capacity, etc.

8. Boundary conditions: Here is defined the target mesh boundaries where a BC is
defined. It includes Dirichlet, Neumann, Robin, etc. The BC definition can be
done by variable declaration (using MATC), as a constant, or as an external user
function (solver). It is possible to set normal or tangential quantities, as well as
nodal, coordinate or element specific BCs.

9. Initial condition: Declares initial conditions for a body or mesh boundary. As well
as in the BC section the initial conditions can be set by body, surface, node, using
tables, arrays or functions.

Elmer has its own post-processor (ElmerPost) but users can also easily rely on high-
performance post-processing software as e.g., Paraview [AHR 05].
Elmer deals with 2D and 3D mesh types containing two kinds of elements (linear and
quadratic). The elements to use depends among several factors including the geometrical
shape of the simulation volume and the precision targeted.

2.3.2 Linear static elastic solver

In Elmer, the linear elastic solver calculates the displacement field by solving the Navier
equations. The dynamical equation for elastic deformation of solid is written as:

ρ
∂2u

∂t2
−∇ · σ = f (2.35)

where ρ is the material density. The general thermal equation for the stress-strain tensor
relationship follows the form:

σij = Cijklεkl − βij(T − T0) (2.36)

with ε the strain tensor and C the stiffness matrix. For anisotropic materials, the elastic
modulus (also called compliance matrix) is a fourth order tensor with 21 independent com-
ponents (elastic constants). The heat expansion tensor β allows to account for thermal
calculation with T0 the reference temperature of the stress-free state, and T the tempera-
ture field. The linearized strain is:
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ε = 1
2(∇u+ (∇u)T ) (2.37)

For isotropic materials, the elastic modulus is function of only two independent values:
the Lame parameters (first: µ, second: λ) or Young’s modulus E and Poisson ration ν.
The stress tensor in function of the Lame parameters is:

σ = 2µε+ λ∇ · uI − β(T − T0)I (2.38)

where I is the identity matrix. The Lame parameters follow the relationships:

λ = Eν

(1 + ν)(1− 2ν) (2.39)

µ = E

2(1 + ν) (2.40)

the BC can be either Dirichlet type:

ui = ubi (2.41)

or Neumann (force) type:

σ · n = g (2.42)

with n the normal vector. The default BC in Elmer implies that g = 0. In this work, the
differential equation solved by Elmer relies on linear statics elasticity. It corresponds to
equation 2.43 without the time dependence

−∇ · σ = f (2.43)

with the BC 2.41 and 2.42 known as the strong form of the BVP. The FEM derivation of
the previous BVP implies to rewrite the formulation in therm of a variational or equation
weak form [ALT 10]. It can be done by multiplying the equation 2.43 by a regular test
function u∗.

∫
Ω

(∇ · σ + f) · u∗dΩ+
∫
S

(f − σn) · u∗ds = 0 (2.44)

Using divergence properties and Ostrogradski-Gauss theorem (divergence theorem), the
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previous integral representation can be reduced to the weak form of the BVP as shown in
equation 2.45 converted to a linear matrix equation [LAR 13]:

−
∫
Ω
Tr[σε(u∗)]dΩ+

∫
Ω
f · u∗dΩ+

∫
S
fu∗ds (2.45)

For each node of each element, the previous integral representation can be converted to a
lineal matrix equation to be solved in the form [k][u∗] = [f ]. Shape functions define the
link between element nodes that are assembled in a general matrix equation:

[K][U ] = [F ] (2.46)

where the BCs of each boundary node (if known) need to be inserted. Elmer uses the
properties of sparse matrix to reduce the matrix size and optimize the calculation of the
unknowns. The unknowns in the equation 2.46 are found by Elmer using either direct
methods (Gauss elimination, Cholesky, Crout) or iterative method (Jacobi, Gauss-Seidel
or conjugate gradient). The quantities ε and σ are calculated from the displacement field
during the post-processing step.

2.4 Conclusion

This chapter aims to introduce the basics of DDD and FEM methods as well as the
both codes (Numodis for the DDD, Elmer for FEM) that are the roots of El-Numodis,
the code developed during my PhD. The workflow of Numodis and its main equations
were discussed with a special focus on the various kinds of BCs available. Most of these
methods generally does not account for free surfaces. The FEM methodology and the
Elmer software were also introduced in this chapter. In particular, one can notice that
Elmer versatility allows for the easy integration of external solvers and drivers without
modifying the main internal structure of the code what will be critical in the development
of El-Numodis as presented in the following chapter.
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Conclusion

Chapter 2: to remember
• The discrete dislocation dynamics method allows to investigate dislocation dynamics

using the continuum elastic theory.
• Numodis is a nodal three-dimensional discrete dislocation dynamics code developed

by Laurent Dupuy and collaborators that is at the roots of the El-Numodis code.
• Most discrete dislocation dynamics simulation are performed using periodic bound-

ary conditions and the contribution of the image force is not accurately accounted.
• The finite-element method allows to solve boundary value problems and is able

to tackle surface problems not accounted in classical discrete dislocation dynamics
simulations.

• Elmer is an open-source multiphysics finite element method code that will be used
to solve the boundary value problems together with Numodis.
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Chapter 3

El-Numodis

Most of the approaches used to study nanomechanical processes have their own limita-
tions. Indeed, experimental techniques such as lab-on-chip or in situ transmission electron
microscopy are expensive and difficult to apply while molecular dynamics simulations are
constrained to very-high strain rates (∼108 s−1) and limited sample size. In similar condi-
tions of simulations, discrete dislocation dynamics provides a solution to both constrains
but hardly accounts for surface effects. In this work, we developed a multi-scale simulation
tool called El-Numodis based on coupling discrete dislocation dynamics and finite elements
using the superposition method to solve complex boundary value problems (including free-
surfaces) while running discrete dislocation dynamics simulations. This chapter is about
the assembly of El-Numodis. First, a mathematical description of the boundary value
problem solution using the superposition method is introduced. Then, technical details
associated to the data interchange and format pairing between Numodis and Elmer are
given. Finally, a description of the main features of El-Numodis (units conversion, inter-
polation and loads) is provided.
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3.1 The superposition method

The SPM was introduced by van der Giessen and Needleman in 1995 [Van 95] as a
solution for 2D complex BVPs involving images forces. It consists in the correction of
the dislocation self-stress and displacement fields σ̃̃σ̃σ(S) and ũ̃ũu(S) originally computed by a
DDD code (assuming an infinite medium) at a physical boundaries S using a FEM elastic
solver (Figure 3.1).
In more details, whatever the geometrical shape of the simulated structure, the SPM relies
on the solution of the elastic BVP computed by FEM [CRO 14] as described by:

∇ · σ̂̂σ̂σ = 0
σ̂̂σ̂σ = CCC : ε̂̂ε̂ε

ε̂̂ε̂ε = 1
2{∇û̂

ûu+ [∇û̂ûu]T }

(3.1)

where σ̂̂σ̂σ is the stress , ε̂̂ε̂ε and û̂ûu are the strain and displacement field generated by the
FEM respectively and CCC is the linear elastic stiffness tensor. In this approach, this set of
equations is constrained by Neumann and Dirichlet BCs:

σ̂̂σ̂σ ·nnn = TappTappTapp − T̃̃T̃T
û̂ûu = uappuappuapp − ũ̃ũu

(3.2)

with TappTappTapp and uappuappuapp the external applied traction and displacement BC and nnn the sur-
face normal. T̃̃T̃T and ũ̃ũu are the tractions and displacement at the boundaries produced by
dislocations. Following the decomposition of Lubarda and Needleman [LUB 93, Van 95],
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The superposition method

the traction and displacements at the boundaries include the contribution of the total
dislocation segments ndd:

T̃̃T̃T =
ndd∑
k=1

σ̃̃σ̃σk ·nnn

ũ̃ũu =
ndd∑
k=1

ũ̃ũuk
(3.3)

with σ̃̃σ̃σk and ũ̃ũuk are respectively the stress and displacement fields of dislocation segment
k. In general, the FEM load is described imposing displacements or forces which implies
that both; the external applied stress TappTappTapp and traction T̃̃T̃T at each surface node i should
be converted to forces before the BC correction. In general, the expression for the nodal
force due to the traction

FiFiFi =
∫
ΓT

(
ndd∑
k=1

σ̃̃σ̃σk ·nnn)NS
i dΓ

T (3.4)

where NS
i is the shape function values of the node i on the surface S. Similar formulation

applies for TappTappTapp.

DDD

u(S)

+
σ~ σ̂σ = +

=
σ~ ^

σ(S)

~

~

Fapp

uapp

Fapp - F(S)

FEM

uapp - u(S)
~

~

σ

Figure 3.1: Scheme of the SPM principle. A finite-size volume containing dislocation submitted to BC FappFappFapp

and uappuappuapp can be divided into a problem where the dislocations are considered submerged in an infinite medium
in which their stress σ̃̃σ̃σ and displacement ũ̃ũu fields at a virtual boundary S are used to correct finite BVP. The
finite stress σ̂̂σ̂σ is then superimposed to the internal stress σ̃̃σ̃σ at each dislocation segment.

The aforementioned theoretical description of the BVP can be implemented consider-
ing an elastic volume containing dislocations under either an external applied force FappFappFapp

or a displacement uappuappuapp at least on two of it boundaries S (Figure 3.1). This BVP can be
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decomposed into two ensembles. One where the dislocations are considered as immersed
inside an infinite elastic medium and their stress field σ̃̃σ̃σ(S) and displacement field ũ̃ũu(S)
are calculated at points conforming the virtual surface S. A second where a linear FEM
elastic solver calculates the stress σ̂̂σ̂σ inside the elastic medium correcting original applied
forces and displacements. The correction is made using the force and displacement fields
generated by the dislocations i.e., FappFappFapp − F̃̃F̃F (S) and uappuappuapp − ũ̃ũu(S). Finally, the computed
heterogeneous stress field σ̂̂σ̂σ is superimposed to the internal stress σ̃̃σ̃σ at each dislocation
segment,

σσσ = σ̃̃σ̃σ + σ̂̂σ̂σ (3.5)

3.2 El-Numodis

3.2.1 Introduction to El-Numodis framework

One of the requirements when the development of El-Numodis started was to make it
user-friendly, easy to understand and modify. For that purpose, El-Numodis is conceived
using Elmer as the master program calling Numodis as an external library. As Numodis
is an object-oriented code, each calculation performed inside a Numodis timestep is done
using an independent function. For instance, there are independent functions to calculate
forces, velocities, to export stresses at a certain position etc. Thus, it is possible to call
all the functions of Numodis independently and externally without changing its internal
structure. On the other hand, Elmer has the ability to use (or interact with) parts of ex-
ternal softwares what makes it particularly versatile. Finally, Elmer self-structure is easy
to manage based on Fortran external functions integrated using its own compiler. This
last point was one of the most important aspect influencing the design of El-Numodis
basic structure.

Basically, an El-Numodis run can be schematized as an Elmer simulation that uses ex-
ternal functions to interchange data arrays with various Numodis functions. El-Numodis
reads Elmer’s mesh files, performs the calculations and saves they output files in a stan-
dard manner (i.e., as Elmer usually does). External functions implemented in Elmer call
the necessary Numodis functions before, during and after a simulation timestep. These
functions are also in charge to read Numodis input files and save the DDD outputs as
it is normally done by Numodis. Please note that El-Numodis has no maximum strain
limitation. This means that the initial volume can be completely deformed what should
require adaptive on-the-fly remeshing. It is worth to mention that, even if we will focus
on incipient plasticity aspects in the following, large strain formalism has not been further
investigated in the context of this PhD work. El-Numodis workflow is summarized in
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El-Numodis

Figure 3.2.
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Figure 3.2: Representation of the sequential communication between Elmer (Fortran) and Numodis (C++)
within El-Numodis. The coupling consists in four main data interchanges between both codes at different
moments within the same timestep. First: the nodes coordinates of the mesh surfaces are sent to Numodis.
Second: Numodis returns (to Elmer) the stress field σ̃̃σ̃σ(S) and displacement fields ũ̃ũu(S) at the node positions.
Third: Numodis sends the dislocation Gauss points coordinates. Then, the stresses at the surface nodes are
converted to nodal forces F̃̃F̃F (S) (see section 3.2.3), the assembly is performed and the solution of the linear
elastic problem is calculated with the BC corrections uappuappuapp − ũ̃ũu(S) and FappFappFapp − F̃̃F̃F (S). Fourth: the elastic stress
at the dislocation Gauss points is interpolated from the nodal values of the elements involving each Gauss point
using the element shape function (see section 3.2.4).

The assembly process in the SPM can be performed at various periodic timestep. Cur-
rently, El-Numodis performs the assembly process after each simulation step. While this
increases the CPU costs, it allows for a more precise regularisation of the fields along time
what was the first aim when developing the method. Note that this can be easily adapted
by the user.
To facilitate the interchange of data between Numodis and Elmer, new drivers were im-
plemented. Indeed, the declaration of variables and functions in C++ and Fortran 03 are
made differently leading to misunderstanding between the data transmitted and received
by each code. To solve this issue, drivers were implemented to change the variables and
functions declarations and translate them from C++ to Fortran.
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3.2.2 External drivers and main functions

El-Numodis relies on three Elmer external functions that call Numodis functions and
performs the data interchange between the linear elastic solver of Elmer and the functions
of Numodis. The structure of such DDD-FEM coupling implementation is illustrated in
the Figure 3.3 and is explained in the following. El-Numodis DDD and FEM parts can be
run on single processor or parallel, but the coupling itself is currently implemented serial.
For this purpose, while the volume simulated in Elmer scales with the one of Numodis,
both of them solve their relative tasks independently i.e., the domain where the FEM
computes the elastic stress is independent of where the DDD solves the dislocation dy-
namics. In order to avoid unnecessary data conversion and facilitate post-processing data
analysis both domains are built with the same numerical size.

Concerning El-Numodis workflow, the first step consists in loading the FEM input
and mesh files (Elmer initialization). There, the material properties, the loading, kind
of variables to be saved, the output frequencies of the elastic variables (displacement,
stress, strain) and the BCs are defined (see the steps of the Elmer .sif file in Chapter 2 for
more details). The first driver called NumodisExportBNodes is in charge of identifying the
boundaries of the simulation box and the corresponding BCs. Nodes coordinates associ-
ated to each BC as well as their respective identity (ID) are saved into data arrays. The
solver initializes Numodis calling the functions that define the DDD simulation conditions
(only done at t = 0). These functions check and read Numodis input files. The final task
of NumodisExportBNodes is to retrieve the stress or displacement field at the boundary
nodes as depending on respective associated BCs. Those “field” values are also stored in
data arrays in the same order of the coordinates arrays preserving their arranged node
IDs to simplify the next steps.
The second driver called is NumodisImport. It is in charge of building the matrix repre-
sentation of the right hand side of the elastic solver [F ] = [K][U ]. It uses the set of node
arrays associated to each BC and modifies its external value (load) according to either a
Dirichlet or Neumann BC. Then, a correction is applied using the SPM. Here, a dedicated
function (SetLoad) identifies the kind of simulation (creep, imposed stress or strain rate)
and assigns the corresponding load value. The SetLoad function calls another internal
function (SaveLoadData) to save the control parameters and deformation data that are
used later to produce output data e.g., the stress-strain curve, temporal evolution of the
plastic strain, dislocation density, etc. Then, the assembly is performed using the functions
SetDirichletNumodis or SetStressNumodis. The function SetStressNumodis is optimized to
also account for traction-free BCs and is responsible for the stress-to-force field conversion
explained in the following section 3.2.3. Finally, the elastic solver of Elmer provides the
solutions of the corrected BVP solving the assembled [F ] = [K][U ] equation and solves
the displacement, stress and strain fields for all the nodes of the simulated domain.
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Figure 3.3: El-Numodis workflow. The FEM code Elmer masters the coupling using the Numodis DDD code
as a library. The three main drivers associated to Elmer i.e., NumodisExportBNodes, NumodisImport and
NumodisExportStress are shown in green.
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Afterwards, a last driver (NumodisExportStress) is run. It stores Gauss points of all the
segments conforming the dislocation microstructure into an array and the stress value is
interpolated using the implemented function GetFemStress. GetFemStress is in charge of
identifying the element involved with each node, performs the global to local change of
coordinates (of both the dislocation Gauss points and the element nodes) and performs
an interpolation of the six elements of the stress tensor using the equations 3.7 and 3.8.
After the interpolation, Numodis formal functions are called to compute forces (nodal,
mirror, internal, core and friction). Then, the nodal velocity is computed and the nodes
are moved before dislocation line remeshing. Besides, this function is also in charge of
saving the DDD simulation data (dislocation node positions, energetic terms and plastic
strain). Optionally in NumodisExportStress, a call to an external software (MedCoupling)
can be done if the total stress of the dislocation needs to be saved. This solver is also in
charged of a dislocation nucleation algorithm described in Chapter 5.

In El-Numodis, the elastic solver saving frequency may differ from the one of the DDD.
It can be useful to increase the simulation speed if the elastic constants are not needed
jointly in the analysis of the final results. However, same save periods are recommended.
As already discussed, Elmer masters Numodis and as Elmer is written in Fortran 2008
while Numodis is written in C++11, these two cannot directly exchange their full internal
data structure and functions from one to another. Now, as of today, only the interoper-
ability between Fortran 2003 and ISO C has been standardized [ANS 04] imposing drastic
limitations on exchanged data types. As a consequence, we developed several wrappers
between Numodis and Elmer. In the first layer, the Numodis C++ class is encapsulated
in a C wrapper hiding object oriented features behind a C interface. The second layer
involves the ISO_C_BINDING mentioned before [ANS 04] to encapsulate the C command
in a Fortran 2003 interface. The third layer consists in defining a Fortran 2008 Numodis
module that embeds the previous Fortran 2003 interface. It should be noticed that the
use of the Simplified Wrapper and Interface Generator (SWIG) [BEA 03] which has been
recently been extended to Fortran [JOH 20] could be interesting in the future to simplify
this rather complex architecture.

3.2.3 Stress-to-force conversion

The SPM relies on field conversions performed at the boundaries. The implementation
of the corrected Neumann BC FappFappFapp− F̃̃F̃F (S) is realized at points over a virtual surface using
σ̃̃σ̃σ(S) converted into F̃̃F̃F (S). However, this requires to convert a stress applied on a surface
to a force applied on nodes. Using the stress definition, we associate a weighted area to
every point where the stress σ̃̃σ̃σ(S) is retrieved and where the corrected forces have to be
computed. To make it simple, El-Numodis uses eight nodes hexahedron elements (bricks)
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at points on the surfaces where σ̃̃σ̃σ(S) needs to be calculated and where the corrected forces
are applied.

n
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Figure 3.4: stress-to-force conversion. The volume is discretized using eight nodes hexahedron elements. Three
different weighted area are present corresponding to nodes that are at the middle (A) of the grid, at the corners
(A

4 ) or at the edges (A
2 ). Only the mesh at the surface is shown here for simplicity.

Three kind of nodes are defined depending of their location (Figure 3.4). The nodes
located in the corners (green nodes on the figure) have a weighted area of A

4 , since they
have only one element to be associated to. In the same way the nodes located at the
edges (blue) have a twice larger weighted area since they are connected to two elements.
Finally, the nodes within the surface (red) have a weight area of A (equivalent to four
times a corner node) as attached to four elements. Thus, the forces F̃̃F̃F (S) produced by a
dislocation at each node is calculated in first approximation by:

F̃̃F̃F (S) = Aσ̃̃σ̃σ(S) ·nnn (3.6)

where A is the weighted area at each node and nnn the normal vector of the element asso-
ciated to the node. In the case of a non planar surface, each element is associated with
a different normal vector and the average normal vector between the various elements in-
volved is accounted. However, we recommend to use another kind of mesh in this case (non
linear, tetrahedrons, pyramidal, etc.) for more accuracy on the stress-to-force conversion.
Indeed, brick elements do not reproduce well the curvature associated to non planar (or
rough) surfaces what may impact the calculation accuracy.
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3.2.4 Stress interpolation

The calculation of σ̂̂σ̂σ at the Gauss point of the dislocation segment also requires math-
ematical conversions since FEM only provides the displacement field at the nodes. Any
other quantities are calculated in a post-processing step. For instances, the stress is calcu-
lated from strain that is calculated from the nodal displacement. Once the post-processing
step of the stress calculation is done, another step is needed to compute it locally, at the
dislocation Gauss points.

8 7

65

4 3

21

ζ

η

ξ

Figure 3.5: Eight nodes hexahedron element (brick) with the local coordinate system (ξ, η, ζ) and node enu-
meration used with the set of shape functions given by equation 3.7.

For that purpose, we developed a routine to detect the brick elements containing the
dislocation Gauss points allowing the stress σ̂̂σ̂σ interpolation from the nodal values of the
brick using its set of shape functions. For an hexahedron element similar to the one
described in Figure 3.5 the set of shape function is given by:
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N1 = 1
8(1 + ξ)(1− η)(1− ζ)

N2 = 1
8(1 + ξ)(1 + η)(1− ζ)

N3 = 1
8(1− ξ)(1 + η)(1− ζ)

N4 = 1
8(1− ξ)(1− η)(1− ζ)

N5 = 1
8(1 + ξ)(1− η)(1 + ζ)

N6 = 1
8(1 + ξ)(1 + η)(1 + ζ)

N7 = 1
8(1− ξ)(1 + η)(1 + ζ)

N8 = 1
8(1− ξ)(1− η)(1 + ζ)

(3.7)

where (ξ, η, ζ) are the local coordinates of the element. The dislocation Gauss point global
coordinates (X,Y, Z) also needs to be converted to the local reference system in order to
use equations 3.7. Afterwards, the elastic stress at the dislocation Gauss point σ̂̂σ̂σgp (or any
other variable) can be interpolated from the nodal quantities by:

σ̂gpij =
8∑

n=1
Nnσ̂ij,n (3.8)

were Nn refers to the shape function of the node n and σ̂ij,n is the elastic stress components
at the node n. Please note that the shape functions equations 3.7 need to be adapted if
another type of element is used by El-Numodis but the interpolation procedure remains
the same.

3.2.5 Loading

El-Numodis uses a combination of FEM BCs and DDD loading modes to run virtual
deformation experiments. The different kinds of loads include imposed stress or strain
rate simulations.
DDD simulations often rely on the projection of an homogeneous applied stress into glide
planes and directions using Schmid factors to compute the shear stress. This approach
is not valid anymore using El-Numodis due to the correction made by the SPM and the
presence of interfaces or surfaces that make the load heterogeneous.
In creep simulations, the applied stress is kept constant during the whole simulation which
allows to model microstructure relaxation. Due to its tensorial definition, the load can
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be of any kind (normal, shear, etc.) and is transformed afterwards to a force load as ex-
plained in section 3.2.3. The preset BCs in Elmer are traction-free BCs. In El-Numodis,
the code identifies the boundaries labelled as traction-free and treats them applying an
external zero stress value that is also corrected as imposed by the SPM. Also, constant
stress rate simulations can be performed by defining the stress rate at a given boundary
using internal library (e.g., MATC) or importing data tables in El-Numodis.

t

t+dt

ndA

b

Figure 3.6: Plastic strain calculation. A dislocation originally located at the configuration represented at time
t moves to t + dt position due to force and shear stress. The area dA swept by the dislocation in its gliding
plane during dt is used to calculate the plastic strain increment using equation 3.9. Adapted from Bulatov and
Cai [VAS 06].

El-Numodis also allows for constant strain rate simulations in a similar way than what is
commonly done in experiments. Implementing constant stress or strain rate loads requires
to recompute the applied stress every time period dt to account for the plastic strain
correction. When a dislocation segment moves, an effective plastic strain increment dεp is
produced according to:

dεpij = binj + bjni
2V dA (3.9)

where V is the simulation volume. The total instant plastic strain is the sum over all
dislocations gliding within the simulation cell. The plastic strain is cumulative and the
total plastic strain εp(t) is computed integrating the plastic strain along time. The total
strain εtot is related to the imposed strain rate ε̇ by:

εtot(t) =
∫ t

0
ε̇dt (3.10)

dt being the simulation timestep.
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During constant strain rate simulation, El-Numodis (as Numodis) corrects any mis-
match between the total strain and the plastic strain using the elastic strain εel and the
Hook’s law. As example, in the case of an imposed strain rate simulation with deformation
applied along the z direction, the elastic strain is:

εelzz(t) = εtotzz (t)− εpzz(t) (3.11)

And the external applied stress is recomputed using the Hooke’s law:

σextzz (t) = Eεelzz(t) = E
[
εtotzz − εpzz(t)

]
(3.12)

The aforementioned feedback loop is quite often used to manage loading processes
in DDD simulations [VAS 06]. The strain rate correction is valid if the external load is
provided trough an applied stress what is usually doable in FEM simulations assuming
the stress-to-force conversion discussed above. However, load can also be defined using
displacements at one or few boundaries in FEM. When it is the case, El-Numodis corrects
the applied displacement uapp using the plastic strain and the initial simulation box length
L0:

uapp =
[
εtotzz − εpzz(t)

]
L0 (3.13)

Constant strain rate simulations using displacements as loading lead to more precise
simulation results (and less CPU costs) since they do not require the additional stress-
to-force conversion step. Finally, El-Numodis can also run asymmetric loading including
cases where fixed displacement is set at one boundary while load is applied to the oppo-
site side (either applying stress or displacement), or even use different loads on opposite
boundaries preserving the whole versatility of FEM Elmer BCs.

3.2.6 Mirror dislocation

A method called mirror dislocation that can be found in HL book, was revisited re-
cently by Weygand et al. (for DDD simulations) allows to reduce the stress induced by
nearby dislocations at a boundary [HIR 82, WEY 02]. During the PhD, this method was
implemented in Numodis with the help of Dupuy to compare the efficiency of the SPM
working with and without the mirror dislocation method. When a dislocation approaches
a surface, the resulting local stress field is obtained adding the contribution of an out-of-
the-box mirror dislocation to the original dislocation stress field. The bulk dislocation is
detected once it reaches a certain cutoff distance from the surface (rimc ) where El-Numodis
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replicates the dislocation portion contained between rimc and the surface, on the other side
of the surface, using planar symmetry as shown Figure 3.7.

Mirror dislocation
rc

im

rc
im

Bulk dislocation

DOF

NA
0
2

Figure 3.7: Mirror dislocation image construction as implemented in El-Numodis. Assuming a critical dislo-
cation rim

c , the bulk dislocation (blue curve) is replicated outside of the simulation box with opposite Burgers
vector (yellow cube). The color scale represents the DOF of the nodes corresponding to the bulk dislocation.

The resulting mirror dislocation is characterized by a symmetric line orientation but
opposite Burgers vector. While its stress field is accounted within the simulation cell in
order to reduce the image forces, the mirror dislocation does not produce any plastic shear.
Also, Numodis collision detection functions are used to identify a dislocation segment
about to react with its mirrored counterpart, both emerging at the surface. In this case,
the reaction leads to the annihilation of both dislocations due to the geometry of both
defects leaving a ledge made of surface nodes (Figure 3.8). The surface nodes have the same
mobility properties of bulk nodes, but are constrained to move only on the sample surface
(with the possibility to pass from one surface to an adjacent one). Furthermore, ledges have
the same properties than dislocation i.e., they can superimpose when several dislocations
reach the surface consecutively at the same location, they can also annihilate but do not
produce any stress inside the sample. This later consideration might be improved in the
future.

The image stress produced by the mirror dislocations can be used in DDD simulation
to reduce the stress field at the surface and better account for dislocation vs. surface
interaction in various cases e.g., during dislocation nucleation. The impact on stress res-
olution of the mirror dislocation method, classical traction-free BC resolved by SPM and
the combination of both will be discussed in the next chapters.

3.3 Conclusion

Chapter 3 resumes the main development aspects of El-Numodis i.e., a code that cou-
ples the FEM code Elmer and the nodal code for DDD Numodis based on the SPM.
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Figure 3.8: Ledges formed at the surface after the reaction of a bulk dislocation with its “mirror” counterpart.
The color scale represents the DOF of the nodes corresponding to the “real” dislocation and the ledge.

The aim of El-numodis is to run dislocation dynamics simulations accounting in a better
way for surfaces (or interfaces) interactions with dislocations. It relies on various drivers
and wrappers that allow Elmer to master Numodis used here as a library. In addition
of classical SPM features, El-Numodis also benefits of the mirror dislocations method of
Weygand et al. and a dislocation nucleation algorithm (described in Chapter 5), both
implemented during the PhD. The main features of the Elmer and Numodis codes are
preserved within El-Numodis and the code is now available on demand. Several upgrades
could be made in the future. First, I would recommend to parallelize the data interchange
between the Elmer and Numodis, the later being now parallel (upgrade done in parallel
of my PhD). Also, on-the-fly capabilities for re-meshing seem critical to improve large
deformation capabilities. Also, El-Numodis uses the simplest 3D spatial discretization (8
nodes brick) but Elmer provides a bunch of elements that can be included in the libraries
of El-Numodis. New interpolation methods based on shape functions associated to the
new elements could be implemented.

Chapter 3: to remember
• El-Numodis is a discrete dislocation dynamics/finite-element method code based on

the superposition approach that uses the linear elastic solver of the finite-element
software Elmer and the nodal discrete dislocation dynamics code Numodis.

• El-Numodis is implemented using Elmer as a leading platform calling Numodis func-
tions as external libraries. The user interface of Elmer is used to control most of the
simulation parameters.

• El-Numodis uses the finite-element method for the calculation of the image forces.
It can be optionally combined to the mirror dislocation approach developed by Wey-
gand and collaborators.

• El-Numodis is able to performs various kinds of deformation simulations including
creep and imposed stress or strain rate simulations.
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Chapter 4

Solving boundary problems

The image stress induced by the presence of surfaces plays an important role on the
evolution of dislocation microstructures in mesoscale simulations and, when the length
scale decreases, surface effects become stronger. In dislocation simulations, the correct
evaluation of the image stress and surfaces effects are therefore of major importance. In
this chapter, we evaluate the effect of surfaces and their implications in terms of image
stress through a set of benchmarks and test simulations using El-Numodis.
First, self and image stress concepts are introduced relying on the descriptive examples
found in the book of Hirth and Lothe [HIR 82] and both are investigated using El-Numodis.
Then, El-Numodis is used to address stress-free boundary conditions in the cases of infinite
and square-loop dislocations, both in half-infinite spaces. The precision of the method is
tested regarding the mesh resolution and the activation (or not) of the mirror image dislo-
cation method. Finally, this chapter ends up with an application on thin films tensile tests
that illustrate the role of surfaces on the dislocation behavior and mechanical response.
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4.1 Self-stress of an infinite dislocation

The aim of the SPM is to integrate the effects of realistic surfaces into DDD simulations
by a rigorous treatment of the BVP [Van 95]. The correction is made for Neumann BC
by using the self-stress σ̃ of dislocations present in the simulation cell as computed at the
boundaries. Such self-stress is calculated and provided by Numodis within the coupling
scheme presented in Chapter 3. As a consequence the effective reproduction of the self-
stress by El-Numodis has to be corroborated.
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Figure 4.1: El-Numodis setup for self-stress tensor calculation of an infinite edge or screw dislocation. The
simulation box is 1.0 µm long in the three directions. The infinite dislocation is located at the middle of the
box. The σ̃yy component of the self-stress field is illustrated in a plane perpendicular to the dislocation line,
here for an edge dislocation.

Theoretical expressions of the self-stress of infinite edge and screw dislocations can be
found in the case of infinite medium in HL book [HIR 82]. The singular theory includes a
set of expressions for the stress distribution that are valid except in the dislocation core.
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Self-stress of an infinite dislocation

In the same way, dislocations located close to a free-surface may generate intensive stress
at the surfaces, including critical values associated to the core singularity. In order to
avoid this problem, the non-singular theory of Cai [CAI 06] is used in El-Numodis (see
section 2.2.3).

Cai

El-NumodisCai

El-Numodis

El-NumodisCai El-NumodisCai

El-NumodisCai Cai

El-Numodis

σzz σxz

σyz
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σyy σxy

Edge dislocation Screw dislocation

Stress (MPa)

~ ~ ~

~ ~ ~
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Figure 4.2: Self-stress for an infinite edge (four components inside the blue square) and screw (two components
inside the red square) dislocations. For each components, the stress map is divided in two subspaces: left or top
is the analytical Cai theory [CAI 06] calculated with MATLAB and right or bottom is its counterpart computed
with El-Numodis. The dashed lines represents the boundary between the two approaches.

The distribution of the self-stress provided by Numodis or El-Numodis for a straight
dislocation is confronted to the theoretical description provided by Cai (here computed
using MATLAB). The simulation consists of a cube cell with dimensions 1×1×1 µm3

(Figure 4.1). Copper lattice parameter (a0 = 3.61 Å) and isotropic elasticity (λ = 77.3
GPa, µ = 42.0 GPa, ν = 0.324) are used for the example. The dislocation line is located
right in the middle of the box and lies along the [001] direction. It is important to mention
that this simulation represents a synthetic case where Cu materials properties are used
only with the aim to obtain realistic values. The Burgers vectors points towards [100]
and [010], respectively for the screw and edge dislocations. The self-stress is computed
at a mid-plane normal to the dislocation line. Equations 2.18 to 2.25 provide theoretical
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Chapter 4 – Solving boundary problems

references for infinite dislocations. In El-Numodis, the infinite dislocations can be modeled
using infinite edge/screw object (already available in Numodis) or by creating a FR source
long enough within the simulation box. Here we use the infinite dislocation object and
use PBC along the dislocation line.

A one-to-one comparison of the self-stress based on the Cai theory computed with
El-Numodis and MATLAB is shown in Figure 4.2. El-Numodis correctly reproduces the
Cai theoretical expressions of the self-stress components as computed with MATLAB. This
confirms the correct implementation of Cai theory within Numodis and El-Numodis. Also,
we have verified that changing the BCs from periodic to fixed as well as small changes of
cell dimensions along x and y do not significantly impact the results.

4.2 Infinite edge dislocation near a free-surface

In a finite body, the stress around a dislocation is affected by the presence of surfaces.
This effect is more significant with the reduction of the distance to the surface. Stress-free
BCs can be reached in mesoscale simulations generating an image dislocation outside the
crystal to cancel the stress of the bulk dislocation at the surface. This image method is
analogous to the concept of “image charges” in electrostatics [JAC 98].

4.2.1 The image method

Edge Image edge

Free surface-

Figure 4.3: Image dislocation concept in the case of an infinite edge dislocation located at a distance l from a
free-surface. The left part (y < 0) represents the material side including the “real” edge dislocation while the
right part (y > 0) contains the “image” edge dislocation with opposite Burger vector. Adapted from [HIR 82].
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Infinite edge dislocation near a free-surface

In HL book was proposed a solution to solve the stress-free BVP for a simple geometry
and a straight-infinite dislocation using the image method. Considering that the self-stress
for infinite dislocations has two non-zero components for screw dislocation and four non-
zero component for the edge; it allows in some cases to simplify the three dimensional BVP
into a two dimensional symmetric problem (as shown in Figure 4.3). Here the BVP consists
in an infinite dislocation with a glide plane perpendicular to a perfectly flat surface and
is solved by placing the image dislocation symmetrically on the other side of the surface
(same glide plane, same distance, opposite Burgers vector).
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Figure 4.4: Stress maps for real (left) and image (right) edge dislocations computed using MATLAB. The
dislocation is set at 0.2 µm from the virtual free-surface (dashed line). All components cancel at the free-surface
except the σxy due to symmetry.

The problem can be represented as two dislocations with opposite Burgers vectors set
in the same slip plane and at a distance 2l from each other. Under such conditions, the
stress generated by the image dislocation cancels the stress generated by the real one at
the middle distance where the boundary is located. This problem is investigated here
using MATLAB implementing the Cai theory in the cases of edges and screw dislocations.
The distance between the dislocation and the virtual free-surface is set to 0.2 µm and the
plot is produced using the elastic constants of copper and the setup is similar to the one
depicted in Figure 4.3.
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Chapter 4 – Solving boundary problems

Results are shown Figures 4.4 and 4.5. As expected, the self-stress of the image edge
dislocation superimposes to the one of the real dislocation and cancels it at the location of
the hypothesized surface (dashed lines) for σ̃zz, σ̃xx and σ̃yy components but not for σ̃xy
(Figure 4.4). Similarly, σ̃xz is canceled at the virtual surface for the screw character but
not σ̃yz as shown in Figure 4.5.
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Figure 4.5: Stress maps for real (left) and image (right) screw dislocations. The dislocation to virtual free-
surface (dashed line) distance is 0.2 µm. σxz cancels at the virtual free-surface location but not σyz.

So, the image method is not sufficient to fully solve the BVP. The stress patterns
generated by the dislocation lines are symmetric with respect to the glide plane. Moreover,
inverting the sign of the Burger vector implies to rotate the stress pattern by 180°. It means
that the components that cancel at the free-surface depend on the orientation of the free-
surface regarding the glide plane. For instance, in Figure 4.4, the σ̃xy component does not
cancel because the hypothetical free-surface is parallel to the symmetry axis of the stress
pattern. The same reasoning applies for the σ̃yz component of the screw dislocation in
Figure 4.5.

The previous analysis implies that using the image method to cancel the stress at a
free-surface is not enough and some additional features need to be introduced to ensure
the cancellation of the shear and normal stress components at the boundaries. In HL
book, the concept of Airy functions was used to cancel the remaining stress components
at the surface. This will be further detailed in the next section. One can notice that in the
electrostatic theory, the force induced by a point charge is fully cancelled at the surface
when using the image method. Indeed, the electric field of a punctual charge expands
radially from the charge position and is not symmetric [JAC 98].
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Infinite edge dislocation near a free-surface

4.2.2 The Airy functions

In the previous section, we have seen that the dislocation image construction is not
enough to ensure stress-free BCs. To solve this issue, Airy functions are used to analyti-
cally verify the stress-free BCs [HIR 82]. In the following, we use again the infinite edge
dislocation protocol facing a free-surface (Figure 4.4) to detail the reliability of the Airy
functions. Please note, that the following analysis is valid also for the screw dislocation
character.

(c) (d)

(a) (b)

Self stress Image stress

Self + Image stress Airy stress

Y (μm) Y (μm)

Y (μm) Y (μm)

Figure 4.6: Stress components computed for an infinite edge dislocation located at 0.1 µm from a free-surface
along the boundary (2 µm length). (a) self-stress (σ̃) generate by the real dislocation, (b) image stress (σIm)
generated by the image dislocation, (c) is the sum of the self and image stress. (d) the Airy stress function.

In Figure 4.6 (a), analytical σ̃xx, σ̃yy, σ̃xy, and σ̃zz are plotted along a line of the virtual
surface boundary using the Cai theory for a dislocation located at 0.1 µm of the surface.
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Chapter 4 – Solving boundary problems

The construction of the image stress (Figure 4.6 (b)) inverts symmetrically all the com-
ponents along the Y axis except σ̃xy which is self-similar. Thus, stress is not canceled
when summing self and image stresses at the virtual surface as shown in Fig. 4.6 (c). It
is instead doubled and reaches 50 MPa in the region just in front of the dislocation line
(in agreement to what is shown in Figure 4.4).

The Airy stress for an infinite edge dislocation [HIR 82] is given by equations 4.1 to
4.4.

σAxx = − 2µblxy
π(1− ν)r6

[
3(l − x)2 − y2

]
(4.1)

σAyy = µbl

π(1− ν)r6

[
4(l − x)3y + 6(l − x)2xy + 4(l − x)y3 − 2xy3

]
(4.2)

σAxy = −µbl
π(1− ν)r6

[
(l − x)4 + 2x(l − x)3 − 6xy2(l − x)− y4

]
(4.3)

σAzz = 4µblν
π(1− ν)r6

[
(l − x)3y + (l − x)y3

]
(4.4)

With r = (l2 + y2)1/2 being the symmetric term respect to the center of coordinates
(X,Y ).

Self + Image + Airy stress

Y (μm)

Figure 4.7: Superposition at the virtual free-surface of the self, image and Airy stress components for an
infinite edge located at 0.1 µm from a free-surface

The Airy stress is plotted in Figure 4.6 (d) along the boundary as in the previous setup
description. As it is plotted along a vertical line located at x = 0, σAxx = 0 (equation 4.1).
Remaining terms are not null and σAxy is in the same range than σImxy (Figure 4.6 (c)) but
with opposite sign (Figure 4.6 (d)). The total stress components σTxx = σ̃xx + σImxx + σAxx+
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Infinite edge dislocation near a free-surface

and σTxy = σ̃xy +σImxy +σAxy that correspond to the normal and a shear components satisfy
the stress-free BC (Figure 4.7) i.e, they are null at the virtual boundary.
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Figure 4.8: Airy stresses for an infinite edge dislocation (black dot) located at 0.1 µm from a free-surface
(dashed line).

Figure 4.8 shows the four components of the Airy stress (equations 4.1 to 4.4) for the
same edge dislocation setup. The stress map produces symmetric iso-stress curves with a
pattern similar to the one of the self-stress. The component σAxx provides zero stress at
the virtual free-surface (dashed line at x = 0) as shown previously in Figure 4.6 (d).

To test the implementation of the SPM method within El-Numodis, we designed a
setup made of a slab with dimensions 1 × 2 × 1 µm3 as shown in Figure 4.9 (a). Still
using copper as model material. An infinite edge dislocation (red line) is positioned at
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Chapter 4 – Solving boundary problems

a distance 0.1 µm from a free-surface (green rectangle) with the slip system (blue plane)
perpendicular to the free-surface. The opposite parallel surface is set as a fix boundary
with zero displacement. The other surfaces are not considered in the SPM corrections
assuming infinite size in the Z and Y directions. The simulation cell dimensions are
1× 2× 1 µm meshed with eight nodes hexahedron refined around the dislocation line.

2μm

1μm
1 μm

x

y

z

Graph
plane

Glide 
plane Edge

Dislocation

Free 
surface

Theory

El-Numodis

Infinite

Edge
Image

dislocation

Airy 

Stress

= +

= +

Mirror 

dislocation

(a)

(b)

(c)

Numodis Elmer

Figure 4.9: Infinite edge vs. free-surface computed using El-Numodis. (a) Setup, the infinite edge dislocation
(red line) is located at 0.1 µm from the free-surface (green rectangle). The black-dashed line over the free-
surface represents the location to inquire the stress component. The black square at the center of the box shows
the place to construct the stress maps as represented in (c). (b) Scheme of total stress calculation produced by
the superposition of the self, the image and the Airy stresses, (c) Similar scheme when applied to El-Numodis
framework.

As previously mentioned, the total stress is defined as σTσTσT = σ̃̃σ̃σ + σImσImσIm + σAσAσA (Figure 4.9
(b)). In the other hand, the superposition principle implies that the total stress is defined
as σTσTσT = σ̃̃σ̃σ + σ̂̂σ̂σ (Figure 4.9 (c)). Thus, σ̂̂σ̂σ = σImσImσIm + σAσAσA provides an easy way to check the
correct implementation of the BVP in El-Numodis comparing the FEM stress (σ̂̂σ̂σ) to the
theoretical term σImσImσIm + σAσAσA, as it is done in Figure 4.10.

The stress maps constructed by the sum of the stresses σAσAσA + σImσImσIm (Figure 4.10 (a))
and σ̂̂σ̂σ as calculated by El-Numodis (Figure 4.10 (b)) at the graph plane are reproduced
with certain similarities. σ̂̂σ̂σ however tends to be less precise compared with its theoretical
counterpart mainly due to two aspects. First, the solutions provided are valid for an
infinite half-space i.e., an infinite space with only one boundary to account for. In the
FEM simulation, a finite volume is used and approximations are made to reproduce half
spaces: in the previous simulation, the free boundary was subjected to Neumann BC
with zero external applied stress and corrected by the SPM. Also, as it is done in FEM
simulations involving loading or mechanical deformations, at least one boundary is set
with a fixed displacement BC (X = 1 µm in Figure 4.9 (a)) that ensures the setup can
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Figure 4.10: Comparison between the theoretical terms (a) σAσAσA + σImσImσIm and (b) the FEM stress σ̂̂σ̂σ produced by
El-Numodis using the setup and the theoretical formulation of Figure 4.9.

withstand high-stress without displacing the simulation domain. The implementation of
a rigid wall as the opposite face of the stress-free-surface together with the presence of
boundaries (even if not corrected by the SPM) implies that stress in near-regions will not
reproduce exactly the theoretical predictions. This is remarkable if a straight comparison
is done between Figure 4.10 (a) and (b) stress maps. As a consequence, the color map
for the FEM stress σxx looks more stretched in the region near the fixed wall. In the
same way, the area of higher values (red oval) is reduced for the component σxy. The
other two components also reduces the size of the area of higher values of the stress maps
symmetrically to the Y direction by the presence of boundaries associated to the FEM.

Secondly, FEM represents an approximate numerical tool to solve differential equa-
tions. As an approximate method, the solutions are obtained using spatial discretization
grids. The quality of the mesh plays an important role in the precision of the numerical
solution. In this study, the mesh grid is chosen to be refined around the dislocation line
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Chapter 4 – Solving boundary problems

and in the region between the free-surface and the dislocation line (more than three ele-
ments in between the dislocation line and the free-surface). In the next section, we will
partly discuss the influence of the mesh discretization on image stress calculation outcomes.

4.2.3 Influence of the pseudo-mirror dislocation construction

The pseudo-mirror method for the construction of image dislocations [WEY 02] (see
section 3.2.6) was implemented with the help of Laurent Dupuy in Numodis and El-
Numodis. The method is optional and the user can choose to use it or not. It was
intended to manage dislocations leaving the sample and provides certain advantages to
obtain the image stress compared to the sole FEM correction used up to now.
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Figure 4.11: Comparison between the (a) theoretical σAσAσA and (b) the FEM stress computed by El-Numodis
when the pseudo-mirror method is activated using the edge dislocation setup.

Here we use again the edge dislocation vs. free-surface setup with the pseudo-mirror
method as implemented in El-Numodis. Under such conditions, El-Numodis generates a
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Infinite edge dislocation near a free-surface

mirror dislocation outside the free-surface with a glide plane mirrored with respect to the
real one. The mirror dislocation is a fictitious dislocation that is use only to compute the
mirror stress σImσImσIm to be added to the self-stress at the free boundary (it does not produce
any shear).

In analogy to the stress comparison of the last section, the analytical total stress
σTσTσT = σ̃̃σ̃σ + σImσImσIm + σAσAσA (Figure 4.9 (b)) can be compared with the total stress σTσTσT = σ̃̃σ̃σ +
σImσImσIm + σ̂̂σ̂σ computed by El-Numodis (Figure 4.9 (c)). As shown in Figure 4.11, σ̂̂σ̂σ compares
successfully with σAσAσA when pseudo-mirror method is activated in El-Numodis. These results
are in better agreement than the previous case discussed in the last section. Thus, we
conclude that using the pseudo-mirror dislocation approach represents a more accurate
methodology than the sole FEM correction.

To confront the pseudo-mirror approach to the traditional image construction based on
the SPM, we rely on the mesh discretization in El-Numodis. The FEM implementation
is well known to be critically dependent on the type of mesh and the quality of the
discretization. Here we focus on 8 nodes hexahedron meshes but test the mesh quality.
The quality of the mesh can be improved by multiplying the number of elements or by
refining where large stress gradients are expected.

The precision of the SPM within El-Numodis is tested accounting for four mesh qualities
(Figure 4.12): 30, 60 and 120 regular elements in the three direction of the box (Figure
4.12 (a-c)) and an additional one using a refinement criterion around the dislocation line
and near the free-surface (Figure 4.12 (d)). The mesh is refined using Gmsh algorithms
“Using Bump” -4.9 and “Using Progression” 1.3.

(a) (b) (c) (d)

Figure 4.12: Various mesh discretizations for the edge dislocation vs. surface setup. (a, b, c) represents
the setup with mesh distribution equally in the three directions with 30, 60 and 120 hexahedron elements per
direction, respectively. (d) the setup is meshed with 25 × 25 × 60 hexahedron refined around the dislocation
line with the Gmsh options “Using Bump” -4.9 and “Using Progression” 1.3.

The influence of the mesh quality should have a direct impact in reaching the stress-
free condition as well as the implementation of the pseudo-mirror method. It is then
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Chapter 4 – Solving boundary problems

necessary to test the role of both aspects in the coupling. Figure 4.13 (a) is a recall of
the stress reduction (infinite edge dislocation vs. free-surface) using El-Numodis and the
theoretical model found in HL book for the normal (σxx) and shear (σxy) components.
Theoretical results shows stress reduction at the free-surface from about 25-27 MPa to
zero when σ̃̃σ̃σ + σImσImσIm + σAσAσA are added at the boundary (x = 0). El-Numodis counterpart
using a mesh discretization of 120 elements as in Figure 4.12 (c) for the case when no
pseudo-mirror construction is considered (denoted as Sim) shows very comparable results.
Finally, the numerical results for σ̃̃σ̃σ and σ̂̂σ̂σ have to be added. The Sim curved shows two
important results. First, El-Numodis and theoretical self-stresses are not strictly identical
due differences in the kind of BC implemented in El-Numodis. Again, the theorethical
equations of the self-stress consider an infinite medium. In our case, the edge dislocation
has a free-surface at 0.1 µm that makes the self-stress provided by El-Numodis different
to the analytical curve especially in regions where other real surfaces are located, like
the cell corners. Also another factor influencing this aspect is the fact that a such short
distance from a free-surface the nature of the dislocation is important. The infinite edge
dislocation is produced using a long-enough FR source that is replicated outside the box
in order to reduce this effect near the center of the dislocation. However, the ending nodes
of the dislocation line that lie at the external faces generate fictitious stresses that affect
the stress distribution at the free boundary. This is why the two curves superimpose near
y = 0.0 µm but differ in other regions. Second, the stress-free condition computed with
El-Numodis shows non-zero stress. This outcome is related to the mathematical nature
of the problem. El-Numodis is based on FEM that represents an approximated numerical
tool with numerical errors. Besides, the precision of the FEM strongly depends on the
mesh type and quality. One can notice that similar stress singularities at free-surface
were already observed in simulations using the SPM [WEY 02] or the DCM approaches
[JAM 16, HUA 17].

The influence of the mesh size is shown in Figure 4.13 (b) still in the case of the
infinite edge dislocation facing the free-surface. All the configurations provided in Figure
4.12 with the pseudo-mirror method activated or not are described. Here the aim is to
reproduce the Airy stress for the σxy shear component (H&L red line) using El-Numodis.
When the pseudo-mirror construction is activated (30 W, 60 W, 120 W and Ref W)
then the σ̂̂σ̂σ is directly compared to the Airy stress. When El-Numodis is used without
pseudo-mirror dislocation (30, 60, 120, Ref), σ̂̂σ̂σ is added to σ̃̃σ̃σ computed along the same
line along the free-surface. In general, better results are obtained increasing the mesh
quality. Refining the mesh along the dislocation line (Ref, Ref W) provides almost the
same stress values independently if the pseudo-mirror method is activated or not. But
when a coarse mesh is used, the pseudo-mirror dislocation method improves the results. It
represents an important results if the computational efficiency is an important criterion. A
simulation with a very well refined mesh or including a detection algorithm that recognizes
a dislocation approaching a free-surface automatically refining the mesh in the near-region
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Figure 4.13: Stress reduction at free-boundary for an infinite edge dislocation facing a free-surface: influence
of mesh and pseudo-mirror method. (a) El-Numodis is compared to the theoretical model found in HL book.
Stress components are computed along line lying on the free-surface (see Figure 4.9 (a)), (b) El-Numodis σxy

(or σxy-σIm
xy when accounting the mirroring dislocation method) correction as function of mesh refinement.

Simulations are performed for mesh discretization of 30 (dashed curves), 60 (dotted curves) and 120 (full
curves) 8-nodes hexahedron elements in the three directions of space, using the Weygand mirror dislocation
method (W) or not. Ref curves rely on the aforementioned 30×60×30 with particular mesh refinement near
the dislocation using Gmsh (Bump = -4.9 and Progression = 1.3). Results are compared to the σA

xy of the
model explained in Hirth & Lothe book (referred as H&L, red curve). Data are plotted along a vertical line
passing by the middle of the x -surface as shown in Figure 4.9 (a).

might improve the results. However, both simulations might have significant CPU costs
and are out of the scope of the present study.
Based on this parametric study, we assume it is enough to use an intermediate mesh size
(60 elements) with the pseudo-mirror dislocation method activated to have an acceptable
stress accuracy.

4.3 Square-loop dislocation near a free-surface

In real experiments or even in massive DD simulations, it is hard to find situations
where a perfectly straight dislocation is at the vicinity of a free-surface. For the FR case
in DDD, the initial straight pinned dislocation bends into a circular shape and elongated
dislocation loop. When such a curved dislocation is in the vicinity of a surface, the
topological object that faces the planar surface is not a straight dislocation but rather
a curved one. Furthermore, it is not infinite anymore. This effect is more evident with
the reduction of the sample size, what makes surface effects even more relevant in this
context. From the experimental side, dislocation microstructures are formed by a bunch
of curved linear elements often compared to a spaghetti plate. In the following section,
El-Numodis is tested against a more complex situation than the straight dislocation line
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Chapter 4 – Solving boundary problems

i.e., the dislocation square loop.

4.3.1 The Gosling and Willis method

The presence of a dislocation line inside any linear elastic material induces a stress field
that can be calculated by a surface integral 4.5. This formulation is valid as soon as the
appropriated Green tensor is used.

σpq(x′) = −
∫
bscsrklcpqmj

∂

∂x′j
Gmk,j(x,x′)dSr (4.5)

Where c is the elastic stiffness tensor and G is the Green tensor associated to a par-
ticular material. x and x′ represent the field and source point of the Green tensor. dSr is
the surface integration.

For an infinite medium, the previous integral can be transformed using the Stokes
theorem into an integral over the dislocation line C as:

σpq(x′) = −
∮
C
bsS
∞
pqrs(x− x′)dx′r (4.6)

where

S∞pqrs(x− x′) = −csnklcpqmjεnjrG∞mk, l(x− x′) (4.7)

represent the kernel of Mura formula 4.6 ([MUR 63]) , εnjr is the completely antisymmetric
unit tensor of order three.

If the medium is not infinite, the previous methodology is not applicable anymore. For
the case of a dislocation loop in an infinite half space, Gosling and Willis (GW) propose
a methodology to find the appropriated kernel SI by which the equation 4.5 still applies.
The final integral has the form:

σpq(x′) = −
∮
C
bs
[
S∞pqrs(x− x′) + SIpqrs(x,x′)

]
dx (4.8)

leading to a direct calculation of the image stress field. More details can be found in
[FIV 96, GOS 94].

The analytical approach of GW is confronted here to El-Numodis. Analytical results
for the image stress are obtained for the case of a square loop inside a half space where
only one free-surface is considered1. The line integral of the GW method provides the six
components of the image stress tensor that are inquired along a line passing trough the
center of the dislocation loop. The dislocation glide plane makes an angle of 54.7° with
the bottom free-surface and the material is copper.

1This work was performed in collaboration with Marc Fivel (SIMAP, CNRS, INP Grenoble)
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Figure 4.14: Interaction between a square 1
2 [101](111) dislocation loop and a free-surface located at the bottom

of the simulation cell. (a) 1 µm lateral side loop located at 1 µm using a regular mesh. (c) Same configuration
suing a refined mesh at the bottom. (e) The distance from the free-surface to the dislocation is changed to 0.37
µm and the lateral side of the loop is adapted to 0.5 µm for a refined mesh at the bottom. (b,d,f) image stress
calculated using the GW method (solid colored lines) compared to the image stress calculated with El-Numodis
(colored dot) along the vertical and central dashed line depicted in (a,c,e).

In El-Numodis, a simulation box of 5× 5× 2.5 µm3 is created and oriented in the [001]
direction. A square dislocation loop is inserted in the 1

2 [101](111) slip system. The free-
surface is located at the bottom of the box (z = 0). First, the lateral size of the loop and
the distance from the loop center to the bottom free-surface is set to 1.0 µm. The opposite
face at z = 2.5 µm is kept fix. A similar benchmark was also studied and reported by Fivel
in [FIV 96] using the Tridis DDD software. A regular mesh discretization of 50 elements
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Chapter 4 – Solving boundary problems

in each direction is used in Figure 4.14 (a). The comparison of the image stress obtained
with El-Numodis to the GW analytical solution (Figure 4.14 (b)) shows a particularly
fair agreement except near z = 0 µm (more identifiable on the σzz component). Also, El-
Numodis shows some errors near the 0 to 0.2 µm region for σzz associated to the reduced
number of elements used: only 2 elements are set below the 0.2 µm region. This local
singularity is associated with wide stress gradients that are not accurately solved with
the mesh used. Same simulations are repeated with an improved mesh near the bottom
free-surface (Figure 4.14 (c)). This time only the Gmsh algorithm “Using Progression”
1.30 is used. Fig. 4.14 (d) shows that the indetermination is corrected once the mesh
quality is improved by refinement. The good agreement between El-Numodis and GW
stress in the case of a square dislocation loop facing a free-surface is another proof of the
correct implementation of the SPM within El-Numodis.

With this test-case we have also verified the ability of El-Numodis to reduce the stress
at the bottom surface characterized by stress-free BC i.e., El-Numodis should be capable
to reduce the few stress imposed by the square loop (at least the maximum -4 MPa
for σzz) to the bottom surface to zero. In order the make the test more significant, we
brought the square loop closer to the bottom surface to increase the induced surface stress.
The orientation of the slip system implies that reducing the distance to the surface will
also reduce the lateral side of the loop to not overpass the limit of the free-surface. A
configuration made of a 0.5 µm lateral side loop located at 0.37 µm from the bottom
surface was chosen keeping the same refinement mesh near the bottom surface (Figure
4.14 (e)). The image stress calculation shows that the normal components (σzz) goes now
up to -13 MPa while the two shear, σxz and σyz reach -3 MPa (0.5 MPa before). In
this case the effect of the lateral surfaces is clearly avoided (as compared to the infinite
dislocation case).

To check the stress-free BC (Figure 4.15), the normal and shear components stress
maps of the self and FEM stresses (σ̂) are inquired at the free-surface. σ̂ shows exactly
the same stress maps regarding the self-stress but with opposite signs. The stress-free
is then reached superimposing the dislocation self-stress and the FEM correction leading
to an almost zero residual stress. This test-case confirms that for cases where a realistic
object like a dislocation loop is used; El-Numodis is fully capable to solve BVP and verify
stress-free BC reducing stress values in the order of few tens MPa to zero. Still, the pres-
ence of a residual stress can be associated to numerical issues or mesh refinement.
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Figure 4.15: Surface-stress components computed with El-Numodis in the case of a square loop located at 0.37
µm from the free-surface. The three rows represent the normal (σzz) and the two shear (σxz, σyz) components
over the surface. The first image column represent the self-stress of the loop computed at the surface, the
second column is the FEM correction component, and the last is the superposition of the two previous fields.
The images were made by zooming around an area of 1.21 µm2 around the center of the free-surface.

4.4 Test case: thin films tensile test

In this section, we use El-Numodis to investigate the mechanics of thin films under
tension. A 〈100〉-oriented copper thin film with 1.0 µm lateral size and 0.5 µm thickness
(Figure 4.16) is created and meshed using regular size eight nodes hexahedrons discretized
using 20 points in the [010] and [001] directions and 10 points along [100].

The initial microstructure consists in 25 FR sources of screw character of 0.2 µm length
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Figure 4.16: El-Numodis thin film simulation setup. The sample consists in a copper thin film of 0.5 µm
thickness and 1.0 µm lateral sizes with cubic orientation in which FR sources are randomly distributed in various
1
2 〈110〉{111} slip systems.

randomly located inside the sample. Dislocations slip systems correspond only to the main
slip systems of FCC materials 1

2〈110〉{111}. The starting dislocation network is generated
using a homemade MATLAB routine that considers no recovering between dislocation
FR sources as well as the full-inclusion of the dislocations within the simulation cell (no
boundary overlap), at a minimum distance from the surfaces. The Figure 4.17 shows the
dislocation distribution.

[001]

[100]

[001]

[100]

[010]

[100]

[010]
[001]

[010]

Figure 4.17: Views of the initial microstructure of the 0.5 µm thick thin film from three different angles. The
initial screw FR sources are randomly distributed to avoid the dislocations to intercept the surfaces.

The sample is deformed pulling one of the (001) face (pink face in the Figure 4.16)
at a constant strain rate of 10−6 ns−1 while the opposite (001) face is kept fixed. The
feedback loop algorithm is used to correct the applied stress at the surface (i.e., where
the deformation is applied) as described in Chapter 3. An initial stress of 145 MPa is
imposed to avoid large CPU costs in the elastic regime. Such stress is enough to bend the
FR sources without fully opening them. The rest of the lateral surfaces are submitted to
traction-free BC and the pseudo-mirror dislocation method is activated using a 0.06 µm
cutoff distance.
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Figure 4.18: Strain-rate and stress response of the 0.5 µm thick thin film under traction. (a) Total (blue) and
plastic (green) strains versus simulation time. (b) Computed stress-strain curve (blue) and the skipped elastic
part (dashed red line).

Several tests were made to check the performances of El-Numodis when relying on
time-dependent, “dynamic”, simulations. Figure 4.18 (a) represents the evolution of both;
the total and plastic strain produced along time. A linear fit on the two curves allows to
verify the imposed strain rate value of 10−6 ns−1. This implies that the loading algorithm
is correctly implemented in El-Numodis.

The simulated stress-strain curve is plotted in Figure 4.18 (b). The (effectively skipped)
elastic regime (from 0 to 145 MPa) is shown and we have verified that the amount of plas-
ticity produced by the dislocations during this interval is very small as confirmed by the fit
of the end of the elastic regime (from 145 MPa up to 155 MPa) that perfectly reproduces
the Young’s modulus of the material E = 111.2 GPa. Finally, stress-strain curves and
plastic strain are illustrated in Figure 4.19 where it is confirmed that the plastic regime
initiates at about 165 MPa, before the sample fully yields at about 177 MPa. At this stage,
a larger amount of plasticity is produced by the mobile dislocations and El-Numodis’ ap-
plied stress correction is maximum.

In the following, we discuss the influence of the dislocation microstructure evolution on
the mechanical response. The initial random microstructure is made of several FR sources
distributed on the various FCC slip systems. The precise distribution and Schmid factors
are described in Table 4.1. In this case, there is in total six slip systems with zero Schmid
factors in which dislocations are not supposed to glide.

Figure 4.20 shows dislocation microstructure snapshots at various points along the
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Figure 4.19: Stress-strain curve and plastic strain versus strain for the 0.5 µm thin film. The letters and arrows
represent the main interactions during the simulation and the respective microstructural status is reflected in
Figure 4.20.

Table 4.1: FCC slip systems used in the simulation, their Schmidt factor and the number of dislocation inserted.
Index Slip plane Burgers vector Schmidt factor Number of dislocations
1 (1̄1̄1) 1

2 [011] 0.408 2
2 (1̄1̄1) 1

2 [11̄0] 0 2
3 (1̄1̄1) 1

2 [101] 0.408 2
4 (1̄11̄) 1

2 [011] 0.408 1
5 (1̄11̄) 1

2 [101̄] 0.408 2
6 (1̄11̄) 1

2 [110] 0 1
7 (11̄1̄) 1

2 [01̄1] 0.408 1
8 (11̄1̄) 1

2 [101] 0.408 4
9 (11̄1̄) 1

2 [110] 0 3
10 (111) 1

2 [01̄1] 0.408 4
11 (111) 1

2 [101̄] 0.408 3
12 (111) 1

2 [11̄0] 0 0

stress-strain curve (Figure 4.19). Figure 4.20 (a) refers to the step (a) marked on the stress-
strain curve. It is characterized by two dislocation-dislocation interactions. First, while
opening, a 1

2 [101](11̄1̄) dislocation is attracted towards a non-mobile one in 1
2 [11̄0](1̄1̄1)

and create a junction. After the reaction, both dislocations do not move anymore for
the rest of the simulation. Second, the widely open 1

2 [101](1̄1̄1) dislocation contact with
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Test case: thin films tensile test

the 1
2 [101](11̄1̄) one and further annihilate as having same Burgers vectors (Figure 4.20

(b)). Figure 4.20 (b) shows the moment when the first change of slope of the plastic
strain curve is observed characterizing the yield point. The plastic strain at this stage is
produced mostly due to the gliding of a 1

2 [101](1̄1̄1) (in red) and a 1
2 [101̄](1̄11̄) (in blue)

dislocations.
While stress starts decreasing, some interactions between dislocations occurs and influenc-
ing the stress-strain curve. For instances, Figure 4.20 (c) shows three of those interactions.
c1 represent the re-crossing of two dislocations that interacted before (explained in (a-b)).
As a result of this crossing a FR source is created, where the pinning points are made of
two small arms of two dislocations of same character. Due to its particularly small length,
the resulting FR will require more stress to glide. Thus, this dislocation portion will not
participate to plasticity and will only oscillate, until it will be re-crossed again later on.
In c2, the arm of one 1

2 [101](1̄1̄1) dislocation crosses a bending FR source (1
2 [011](1̄11̄)).

Also, c3 illustrates the future junction and split of the opened 1
2 [101̄](111) dislocation

with a bending one of slip system 1
2 [101̄](1̄11̄). One of the arms product following this

split will interact again with the open part of the original dislocation and will recover the
original FR source. The other part will continue to glide until it forms a ledge at the
bottom surface of the sample (showed in Figure 4.20 (d)). Figure 4.20 (d) corresponds to
the first minimum observed on the stress-train curve. At this stage, several dislocations
are completely opened (or almost) and the instantaneous plastic strain is reduced. As a
consequence, the applied stress increases. Several interactions need to be discussed at this
stage. d1 represents the step explained in the last sentence of the previous paragraph. The
occurrence of a junction and the split of two dislocations in slip systems 1

2 [01̄1](111) (blue
leaving traces at top and bottom) and 1

2 [101̄](1̄11̄) is marked by d2. As the dislocation
continues to glide, one part of the splitting outcome will generate a loop that will cancel
the trace at the bottom of the sample signaled as d3.
Figure 4.20 (e) illustrates a similar situation than in the case of Figure 4.20 (b), but oc-
curring here at a lower stress. Indeed, the process can still happen as the dislocations are
more widely open here. The two red arrows identify the two dislocations that glide easily
i.e., one producing a huge amount of plastic strain triggering the correction of the applied
stress. Also the region marked as e1 represents the cancelling of the trace created at the
bottom surface (see Figure 4.20 (d) for reference) due to stress heterogeneities created by
the red FR source opening nearby.
The snapshot of Figure 4.20 (f) shows the evolution of some dislocations with almost a
linear shape (blue dislocations marked with red arrows). The slow glide of those disloca-
tions produce a non significant amount of plasticity; leading to a re-increase of the applied
stress. f1 shows the effect of the images forces acting to bend a dislocation near the cube
faces.
In Figure 4.20 (g) is captured the moment where the applied stress decreases again. Simi-
larly to previous situations, the two dislocations opening near the top left corner (marked
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Chapter 4 – Solving boundary problems

with red arrows) are responsible for most of the plastic strain produced. However, the arms
of the two dislocations (1

2 [101̄](111) in blue and 1
2 [011](1̄1̄1) in red) dislocations, propa-

gating through the traces of the bottom face, join and zip into a new junction (marked as
g1). At the same time, this new dislocation acts as a pinning point; making a retard in
the way the two FR sources glide. The way this two FR sources interact also trigger the
glide of the dislocation marked as g2 (1

2 [01̄1](11̄1̄)) that was not gliding before, and the
respective trace can be seen in Figure 4.20 (h).

(a) (b) (c)

(j) (k) (l)

(g) (h) (i)

(d) (e) (f)

[010]

[001]

c1

c2

c3

d1

d2d3
e1

f1

g1 g2

h2

h1

Figure 4.20: Snapshots of the simulation of a 0.5 µm thin film using a cutoff distance of 600 Å. The snapshots
matches the marks on the stress-strain curve of Figure 4.19. The arrows and marks are used as guide to the
description in the text. Dislocations are colored as follow: slip systems with index 5 and 11 are in blue, indices
2, 6 and 9 are in green and indices 1, 3, 4, 7, 8 and 10 are in red.

94 2022 – Javier Antonio Gonzalez Joa – MATEIS laboratory

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022ISAL0129/these.pdf 
© [J.A. Gonzalez Joa], [2022], INSA Lyon, tous droits réservés



Test case: thin films tensile test

Another interaction is shown in Figure 4.20 (h). It is a consequence of the reunion
of the arms of the red dislocation (previously marked in g1) gliding at the top face and
interacting with the original 1

2 [101̄](111) FR source (h1). This interaction brings the new
zipped dislocation to the top surface, acting like a pin for the blue dislocation. In the
other hand, h2 shows the interaction of the g2 dislocation with the non-mobile one in
the bottom-right corner of the simulation cell. The variations observed after point (h)
in the stress-strain curve are related to the cancelling of h1 and to the recovering of h2
dislocations. The minimum marked as (i) in the stress-strain curve is similar to the event
described in Figure 4.20 (d). Almost all dislocations are in the initial stage, and only two
glide, creating a small amount of plasticity that tends to increase the applied stress.

4.4.1 Numodis vs. El-Numodis: surface effects comparison

To better understand the effect of the surfaces on the plastic response of the thin film;
the simulation performed with El-Numodis in the previous section is reproduced here us-
ing Numodis only. The aim is to check the differences regarding the method used when
considering surfaces. At the moment, the surfaces can be considered using El-Numodis
with or without the pseudo-mirror construction (just imposing the cutoff to zero) using
the PermeableCuboid BCs where dislocations can escape the sample from the surfaces.
Numodis also allows to account for surfaces relying on the pseudo-mirror construction and
PermeableCuboid BCs. Using PermeableCuboid BCs in El-Numodis and setting a cutoff
distance to zero; implies that the simulation will be performed using the traditional SPM
(without the mirror dislocation method). In the other hand, using Numodis and Perme-
ableCuboid BCs with cutoff distance equal to zero deactivates any surface effects in terms
of stress i.e., the surfaces only act as a penetrable interface, while increasing the cutoff
distance activate the mirror dislocation method (and induced additional stress fields) in
the DDD. The various cases are tested with the pseudo-mirror image method and a cutoff
distances equal to 600 Å (C600) or without it (C0), as illustrated in Figure 4.21. The
plastic responses of Numodis simulations are compared to those of El-Numodis with the
same cutoff values in Figure 4.21 (a) (denoted as ElNumC0 and ElNumC600).

The stress-strain curve of NumC0 shows a larger yield stress when compared with the
other three cases meaning that the surface-effect generated by the pseudo-mirror recon-
struction in Numodis (NumC600) already induces the weakening of the sample. The same
softening effect is observed in El-Numodis with and without the pseudo-mirror method
(respectively ElNumC600 and ElNumC0). For El-Numodis simulations, the differences in
the yield value is about 1 MPa and the rest of the plastic parts evolves almost identically.
It confirms that turning the mirror dislocation method off is almost entirely compensated
by the FEM correction in this case. The difference between those four simulations in terms
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Figure 4.21: Stress-strain curves for a 0.5 µm thick thin film under tension using Numodis and El-Numodis with
and without the pseudo-mirror image construction (NumC0/ElNumC0 from one side, NumC600/ElNumC600
from the other).

of dislocation evolution can be explained using dislocation miscrostructure snapshots at
the yield point (Figure 4.22). For NumC0, the dislocations don’t feel the surfaces and the
stress inside the sample is considered to be homogeneous. Under such conditions, most
of gliding dislocations are in high Schmid factor slip systems (Table 4.1 ). Quickly after
yielding, two dislocations (labelled 1 and 2) make a junction that is not present in the
other cases. Part of the dislocation 1 is observed to reach the plane (100) at x = 0. The
dislocation labelled 3 widely opens due to the high stress and dislocation labelled 5 reaches
the surfaces (001) at z = 1 and (100) at x = 0.

For NumC600 (Figure 4.22 (b)), surfaces tend to open faster dislocation 1 (responsible
of the junction and zipping process mentioned for NumC0) that never reacts with the dis-
location 2. For this simulation, the dislocation reaches both (100) and the (010) surfaces.
Also, dislocation 5 (that is indeed the nearest to the surface) opens widely with respect to
the previous Numodis simulation. This means that the plastic strain produced is already
high and the feedback loop starts decreasing significantly the external stress at a smaller
value compared to NumC0.

For ElNumC0, the dislocation 1 opens faster due to the action of the surfaces while
dislocation 3 and 5 are less opened. It shows that the force exerted by the surface attracts
some particular dislocations from the current microstructure while the rest may not feel
such high attractive force. This effect is clearly seen in ElNumC600 sample were dislo-
cation 4 opens with the help of surfaces (both the FEM action and the pseudo-mirror
construction) while dislocation 5 is not felling any effect from the surface.

These test-cases show the influence of surfaces in small-scale objects. The stress-strain
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Figure 4.22: Evolution of the dislocation microstructure at the yield point for NumC0 (a), NumC600 (b),
ElNumC0 (c) and ElNumC600 (d). The pink dislocations represent mirrored dislocation constructed with a
cutoff of 600 Å. The most important dislocations are identified with number labels.

curves shows that the microstructure react to different stress situations during all the
simulations. NumC0 and ElNumC600 have both different yield stress values but the flow
stress seems to stabilizes almost at the same stress range about 170 MPa meaning that
here, at larger strains, the flow stress is controlled by the bulk rather than the surfaces (in
the contrary to the yield point). Besides, the mechanical response provided by NumC600
looks pretty similar to those generated by El-Numodis.

For this specific setup; using El-Numodis with or without the construction of a pseudo-
mirror dislocation is almost equivalent: the influence of the pseudo-mirror method being
compensated by the sole FEM contribution, and the few differences observed in the mi-
crostructural evolution might be related to the mesh density. In the same way, NumC600
provides almost the same results compared to those obtained with El-Numodis confirming
that the pseudo-mirror dislocation method and FEM can compensate each other when
relying on the effects of surfaces. Also, in this specific case, we have to admit the mod-
erate influence of surfaces. To further investigate it at the nanoscale, we proceed with
a thinner film of 0.25 µm thickness (Figure 4.23) with similar properties except a fresh
random dislocation distribution made of similar FR sources (Figure 4.24).
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Figure 4.23: El-Numodis thin film of 0.25 µm thickness and 1.0 µm lateral size with cubic orientation in which
FR sources are randomly distributed in various 1

2 〈110〉{111} slip systems. Traction BCs are applied on the
(001) lateral surface.
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Figure 4.24: View of the initial dislocation microstructure in the 0.25 µm thick thin film from three different
angles. The initial screw character FR sources are randomly generated to avoid interception between the
dislocations and the surfaces.

The stress-strain curves for the 0.25 µm thick thin film is shown in Figure 4.25 for
NumC0 and ElNumC600 samples (with same denomination as in the previous case). The
pure DDD simulation exhibits a higher yield stress when compared to El-Numodis (196
and 175 MPa, respectively) and, overall, a harder mechanical response all along the sim-
ulation. When compared with the 0.5 µm thickness sample, two aspects can be noticed.
First, the yield point differences between NumC0 and ElNumC600 increases from 17 MPa
in the thicker film to 19 MPa in the thinner one. Also, stress-strain curves do not cross or
superimpose each other anymore and the flow stress are now significantly different. Here,
surfaces in El-Numodis behave as sinks that help the opening of the FR sources towards
the surfaces in a similar way that in the aforementioned TEM lamella case [KOH 20].
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Figure 4.25: Deformation of the 0.25 µm thick thin film under tension using Numodis and El-Numodis using
the pseudo-mirror image construction in El-Numodis simulation only with a cutoff of 600 Å. (a) stress-strain
curves, (b) dislocation microstructure at the yield point.

A

Figure 4.26: Yield stress as a function of the cutoff distance for the 0.25 µm thin film.
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Chapter 4 – Solving boundary problems

Finally, using the same simulation setup using the 0.25 µm thickness thin film, we have
investigated the effect of the cutoff radius of the pseudo-mirror dislocation method for
Numodis. Overall, the yield point tend to decrease when increasing the cutoff distance.
A sensible reduction is observed for cutoff in the range from 0 to 450 Å. For higher values
the yield stress tend to reincrease a little (Figure 4.26). This behavior is associated to the
distance of influence of the stress produced by the virtual dislocation constructed at the
external surface. Indeed, a small cutoff distance implies that the pseudo-mirror disloca-
tions will be of small size and will appear at small distance from surfaces. In the other
hand, when large cutoff values are used, the effect of the pseudo-mirror dislocations can
reach distances deep in the sample and their effects may be detected early in the simula-
tion. A preliminary study was also performed with El-Numodis, and a different situation
was observed. A cutoff distance between 5 to 100 Å keeps the yield point approximately
at the same value of of 157 MPa, the sole FEM compensating the pseudo-mirror method
in computing the image stress. Increasing the cutoff over this range promotes oscillations
of the yield point. It is important to mention that this study was done using the same
regular coarse mesh of the previous test. As a consequences, the oscillation observed may
be an indication that the cutoff distance (for El-Numodis) may be dependent of the quality
and type of mesh used by the FEM. Additional simulations including several mesh distri-
butions should be performed to provide a more detailed description of the pseudo-mirror
dislocation cutoff on the yield stress.

4.5 Conclusion

In this chapter, El-Numodis was tested to reproduce the self-stress of infinite edge
and screw dislocations reproducing satisfactorily the analytical solutions proposed by Cai
[CAI 06]. The theory of mirror dislocation was explored using the formulation found in
[HIR 82] for the cases of infinite dislocations showing that, at least, one component of
the stress tensor was not cancelled at surface where stress-free conditions were applied.
The remaining components have shown to vanish depending on the orientation of the
slip system with respect to the free-surface. The introduction of Airy functions allows to
reach stress-free conditions by canceling the shear and normal stress components over a
surface. After implementation of the Weygand method for mirror dislocation [WEY 02],
El-Numodis was used to investigate infinite dislocation vs. surface interactions. The
results have shown that, when relying on a refined mesh, El-Numodis provided the same
results than the theory, reproducing the image stress whether or not the pseudo-mirror
dislocation construction is used. However, different results were obtained in the case of
coarser meshes. To improve the results, we can think about a dynamically refinement of
the mesh in regions where the dislocation interacts with the free-surface. Such refinement
conditions need a detection algorithm and a refinement protocol that are out of the scope of
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Conclusion

the present study. When a coarse mesh is used, the SPM with pseudo-mirror dislocations
provides better results than the traditional case. This is an important point to account
since the computational costs of the FEM is strictly depending of the number of element
in the simulation box. Having the pseudo-mirror method allows to use coarser meshes
without degrading the quality of the image stress at acceptable computational costs. The
differences found between the theory and El-Numodis were associated to the construction
of the infinite dislocation that implies apparition of residual stresses in the lateral faces of
the half-infinite space, this directly affecting the reduction of the stress at the free-surface.

In the more realistic case of a finite dislocation loop, El-Numodis was compared to the
analytical line integral method of GW. In this case, the errors associated to the interaction
of the dislocation with the stress-free-surfaces (like in the infinite edge test case) of the
half-infinite space were avoided. A regular mesh was first used leading to an image stress
that shows some differences regarding the analytical results due to element discretization.
Such effect was corrected by refining the mesh near the free-surface. Using the same con-
figuration the loop was put at a nearest distance of the free-surface in order to induce
stress values in the order of 10 to 20 MPa in the free-surface where El-Numodis has again
proved its ability to solve the BVP. Finally, we have investigated thin films under tension.
Thin films with two different thickness were tested using El-Numodis to simulate the ef-
fect of surfaces as compared to pure DDD simulations. Surfaces were introduced in three
ways: by pseudo-mirror reconstruction of the image dislocation, by coupling with Elmer
using the SPM and by a combination of the two methods. Results show that surfaces
induce a weakening of the sample yield stress. Within the thinner film, the differences
with and without surface effects have shown to increase. Increasing the cutoff distance
of the pseudo-mirror image dislocation construction reduces the yield stress (at least in
standalone Numodis) but further studies should be made in order to identify the optimal
cutoff value. For El-Numodis, the impact of the cutoff distance is dependent of the mesh
quality. Further studies with different mesh refinement are necessary in order to have a
complete description of the impact of the pseudo-mirror construction on the mechanical
response.
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Chapter 4 – Solving boundary problems

Chapter 4: to remember
• The superposition method as implemented in El-Numodis provides a correct descrip-

tion of the traction-free boundary conditions.
• Using the pseudo-mirror dislocation constructions allows for an accurate image stress

evaluation when coarse mesh are used.
• The image forces computed by El-Numodis for the infinite dislocation and the square

loop test-cases embedded in a half-infinite space correctly reproduce the analytical
solutions (found in Hirth and Lothe book, Gosling-Willis models, respectively).

• The control tests performed during thin films deformation simulations ensures the
correct implementation of the loading algorithm.

• For thin films under traction accounting for surfaces using the superposition method
and the pseudo-mirror image dislocation method, both tend to weaken the sample.

• Increasing the cutoff of the pseudo-mirror image dislocation method decreases the
yield stress in discrete dislocation dynamics simulations.
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Chapter 5

Compression of MgO
nanoparticles

Surface dislocation nucleation plays a key role in the deformation of originally defect-
free nanoparticles and the prevalence of surface effects can not be neglected when modeling
deformation at the nanoscale. With El-Numodis, the effect of surfaces is accounted using
the superposition method. However a methodology is needed to run simulations without
initial dislocation microstructure. For this purpose, we developed a new approach allowing
heterogeneous (or homogeneous) dislocation nucleation based on site activation energies
using kinetic Monte-Carlo and the transition state theory.
The chapter starts with a description of the relevant equations for the transition state the-
ory when applied to dislocation nucleation. Then, two dislocation nucleation algorithms
implemented in El-Numodis are presented. First, a simplified algorithm that helped us
to familiarize with the approach and the transition state theory is proposed. The second
extended approach is more quantitative and opens the route to the comparison with molec-
ular dynamics nanocompression simulation recently performed on MgO nanocubes. Using
activation energies and dislocation radii data (computed using a multi-step nudged elastic
band approach by Amodeo et al.[AMO 21a]) as El-Numodis inputs and the superposition
method, we have been able to reproduce and interpret at the mesoscale dislocation nucle-
ation events observed in previous molecular dynamics simulations [ISS 15]. In particular,
here we give a close look to the influence of temperature, strain rate and sample size on
the evolution of the dislocation microstructure.
This study provides a first attempt of El-Numodis capabilities when applied to model
nanomechanical tests in real conditions of deformation.
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5.1 Introduction to dislocation nucleation and harmonic tran-
sition state theory

At the nanoscale, dislocation nucleation plays an important role in incipient plastic
deformation of crystals. Both continuous and atomistic models were used to investigate
dislocation nucleation [ZHU 08, JEN 11a, RYU 11, MOR 11, GOD 04, AMO 17, ROY 19,
LEE 20]. Limitations arises in the uses of continuous models based on the size of the crit-
ical dislocation nucleus, that can be comparable to few lattice parameters. Moreover,
continuous models are mostly based on linear elasticity, while nucleation process occurs at
high local and global strains, where the stress-strain relation is non linear anymore. MD
does not include such limitations and is used to reveal important details about nucleation.
Unfortunately the time scale of MD is typically in the order of few nanoseconds (with time
steps in the femtosecond) what makes it limited to extremely high strain-rate about 10
orders of magnitude larger than classical experimental strain rates. Modeling dislocation
nucleation as a function of stress and temperature under experimental conditions of de-
formation is thus still a major challenge. An alternative approach, is to combine reaction
rate theories with atomistic models. Atomistic simulations such as the NEB approach
[HAN 98, HEN 00] can be used to compute the activation barrier, which is further used
within the reaction rate theory to predict the dislocation nucleation rate. The mathemat-
ical treatment described in the following can be found in [ZHU 08, JEN 11b, RYU 11].
Both the TST or the Becker-Doring theory provide an expression for the nucleation rate
at constant stress σ and temperature T ,

ν = Nν0 exp
[
−∆G(σ, T )

kBT

]
(5.1)
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Introduction to dislocation nucleation and harmonic transition state theory

with N the number nucleation sites, ν0 is an attempt frequency considered in the range of
the Debye frequency, ∆G is the activation free energy for a nucleation, kBT is the thermal
energy therm (with kB the Boltzmann constant).

To find an expression as function of the constant applied strain rate loading such as
σ̇ = Eε̇, the derivative of equation 5.1 is calculated:

dν

dσ
= νΩ0
kBT

(5.2)

where Ω0 = −∂∆G0(σ)
∂σ is known as the activation volume. Following the development

explained in [GUZ 16] is possible to write dν
dσ = −ν2

σ̇ . Combining the last formula with
equation 5.2 and the definition of the strain rate; an adequate expression for constant
applied strain rate results as:

∆G(σ, T )
kBT

= ln kBTNν0
Eε̇Ω(σ, T ) (5.3)

In a first approximation the effect of the temperature on the activation free energy, one
can write:

∆G = ∆G0(σ)(1− T

Tm
) (5.4)

with Tm the surface disordering temperature and ∆G0(σ) the activation energy on the
zero temperature potential energy surface. Thus, the activation volume becomes,

Ω(σ, T ) = (1− T

Tm
)Ω0(σ) (5.5)

Considering known the activation volume Ω̂ at a given stress σ̂; an expression for the
activation energy near σ̂ can be define linearly in the form ∆G0(σ) = ∆G∗0 − σΩ̂ 1, with
the nucleation barrier in the absence of applied stress defined as: ∆G∗0 = ∆G0(σ) + σ̂Ω̂

[ZHU 08]. Thus, the nucleation stress σ as a function of the strain rate is:

σ = σathermal −
kBT

Ω
ln kBTNν0

Eε̇Ω
(5.6)

with the athermal nucleation stress defined as σathermal = ∆G∗
0(σ)

Ω̂
representing the stress

required to nucleate a dislocation at zero temperature. This kind of approach requires to
determine the activation parameters (∆G∗0, Ω̂) related to a given nucleation site [ZHU 08,
RYU 11]. Equations 5.1 to 5.6 are here provided using global notations while most of the
variables introduced can be locally defined at a nucleation site i. This includes e.g., νi

1This expression is equivalent to ∆G0(σ) = ∆G0(σ̂)− Ω̂(σ − σ̂)
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Chapter 5 – Compression of MgO nanoparticles

and ν0,i, ∆Gi and ∆G0,i, σi or even Ti. Both notations will be used in the following.

Afterwards, the previous theoretical description is combined to a statistical approach
in order to develop two nucleation models usable in DDD/FEM simulations. The first one
is a simplified approach that accounts for constant stress where three nucleation sites are
selected based on a temperature-dependent kinetic Monte-Carlo (KMC) scheme. Com-
putational conditions are assigned to each nucleation site in order to avoid instantaneous
repetitive nucleation events at the same site i.e., a site where a dislocation just nucleated
is not accounted anymore for a certain time. The method is applied to a copper cuboid
sample used here as a test-case. The second model is more complex and accounts for a
database for dislocation nucleation activation energy computed using a multi-step NEB
approach by Amodeo et al. for MgO nanocubes where the local stress controls the avail-
ability of the nucleation sites [AMO 21a].

5.2 Dislocation nucleation in El-Numodis

5.2.1 Simplified approach (constant stress)

The dislocation nucleation period δtKMC is defined as a function of the nucleation rate
per site νi:

δtKMC = 1∑
i νi

(5.7)

where i relies on each nucleation site. Thus, the probability for a dislocation to nucleate
at site i during time δtKMC is computed as:

Si = νi.δtKMC (5.8)

In the following, we investigate the role of T within the aforementioned nucleation
theory at constant stress i.e., assuming constant ∆G0,i. For that purpose, we design a
virtual cuboid sample of size 500 × 500 × 500 nm3 made of FCC copper (λ = 77.3 GPa,
µ = 42.0 GPa, ν = 0.324). Activation energies for surface dislocation nucleation ∆G0,i

are roughly similar to those commonly reported for FCC metals are used (see Table 5.1).
Three nucleation sites are defined and the local nucleation rate νi is computed using a
per-site version of equation 5.1 and a constant activation energy per site ∆G0,i. In Table
5.1, the larger value corresponds to a nucleation site located in the middle of a lateral
face (s) of the cubic sample. Two sites with the same activation energy are introduced at
the two distinct corners of the cube (c1 and c2) considering ν0 = 3.14 × 1013 s−1 and a
constant Tm = 700 K. Equation 5.8 provides the nucleation probability for each nucleation
site i, and satisfies the condition: ∑Si = 1. It means that each site has a “window of
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Dislocation nucleation in El-Numodis

opportunity” in a cumulative probability array that is selected using KMC.

Table 5.1: Parameters used for dislocation nucleation investigations at constant stress. Two sites are available
for dislocation nucleation from corners (c1 and c2) and one from a surface center (s). The dislocation critical
radius rc is imposed to 200 Å whatever the nucleation site. The nucleation coordinates xpos, ypos and zpos are
normalized by the sample size.

Site ∆G0,i (eV) rc(Å) xpos ypos zpos

c1 0.2 200.0 0.0 0.0 1.0
c2 0.2 200.0 0.0 1.0 1.0
s 0.5 200.0 1.0 0.5 0.5

During the nucleation process, uniformly distributed random numbers (URNs) are
generated to pick one of the nucleation site at T = 250 and 650 K.

5.2.1.1 Post-nucleation site shutdown

In real experiments, a dislocation nucleation event changes the local stress landscape
and, as a consequence, the local nucleation probability is modified on-the-fly. Dislocation
nucleation induces stress relaxation and if other similar nucleation site are available, it be-
comes probable that a subsequent nucleation event will take place from another favorable
site (large local stress, low ∆Gi). In the simplified nucleation approach, we assume that
this process is equivalent to the temporary shutdown of the original nucleation site. In
the following, we apply this reasoning to the previous case. Results are shown in Figure
5.1. On the one hand, when a dislocation nucleates from a site e.g., the site s, we cancel it
from the available site list and makes it unavailable for a subsequent SDN event. So, the
probability distribution is changed to 50 % for the c1 or c2 remaining sites, both being
characterized by the same activation energy (Figure 5.1 (b)). In the other hand; if c1 is
chosen first, the probability distribution increases for both c2 and s of the same relative
amount. The trivial case where only one site remains available is obtained when a second
KMC call is performed from any of the previous two situations. In this approach, the site
shutdown period is a crucial parameter that can be set to 1 or few timesteps.

5.2.1.2 Algorithm and implementation

νi and ∆Gi expressions as derived from Equations 5.1 and 5.4 were implemented in El-
Numodis and the workflow of the SDN simplified approach is described in Figure 5.2. The
nucleation algorithm is executed at the beginning of the NumodisExportStress routine
(see El-Numodis main algorithm in section 3.2.2). It is called at each timestep of the
simulation. where, depending on the temperature and δtDDD, two possible scenarios can
happen leading to a single or multiple KMC calls during a DDD simulation step δtDDD.
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Chapter 5 – Compression of MgO nanoparticles

(a) (b)

(c) (d)

1000

  800

  600

  400

  200

      0

c1 = 0.2 c2 = 0.2 s = 0.5 c2 = 0.2 c1 = 0.2 

c2 = 0.2 s = 0.5 c2 = 0.2 

Figure 5.1: Consecutive SDN events (simplified approach). Black dots are 1000 URN generated in [0,1]. The
color bars represents the amount of dots inside each region. (a) Initial conditions, (b) after turning off site s,
or (c) after turning off site c1. The same results are obtained if c2 is turned off instead c1, (d) after turning off
site consecutively c1 and s. Right orange axis is used only to facilitate the black dots plots.
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Dislocation nucleation in El-Numodis

Init: WaitTime, NucStep 
Read ΔG 
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t = WaitTime * NucStep
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Figure 5.2: Simplified (constant stress) dislocation nucleation algorithm workflow.
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Chapter 5 – Compression of MgO nanoparticles

The nucleation algorithm is able to read an external database, store the variables into one
dimensional arrays and update control parameters. During the execution of El-Numodis,
the nucleation algorithm is called for the first time (at t = 0) to read the external database
containing nucleation parameters as e.g., those in Table 5.1. The number of KMC calls
per DDD step nKMC is provided by :

nKMC = δtDDD
δtKMC

(5.9)

where δtKMC is given by equation 5.7. Here is a list of important variables and parameters
for the simplified nucleation algorithm:

• WaitTime is a per-site parameter that the refers to the shutdown period of a site
(e.g., 60 steps)

• SiteWaitTime is an array that contents the remaining number of steps left all the
sites remain shutdown (e.g., 60 - n where n is an elapsed number of steps)

• NucStep is a control variable that is increased by 1 every time you have a nucleation
event.

• StepFlag is the KMC call frequency i.e., 1
nKMC

All these variables are first initiated at t = 0. After t = 0, the nucleation algorithm checks
if a site is available for dislocation nucleation or not. Then, the nucleation algorithm is
called in the two following cases. First is when the number of simulation steps reaches
initial WaitTime or NucStep ×WaitT ime, NucStep behaving like a counter increased
by one (update NucStep every time a nucleation event is performed). Second is when
the regular nucleation frequency of the system StepFlag = 1

nKMC is reached. Once the
simulation reaches any of the two values WaitTime × NucStep or StepFlag, a KMC call
is performed and the value of nKMC is recomputed. After a nucleation event, a site is
shutdown by momentarily increasing its activation energy ∆G0,i by a factor 20 (inside
the ∆G0 array) once the corresponding site has been selected for nucleation. Then, the
SiteWaitTime array is updated after each step. This process precludes from immediate
nucleation events at same site and allows the dislocation to glide during WaitTime El-
Numodis timesteps. This process is repeated within the same El-Numodis timestep during
the whole time nKMC remains larger than 1. Once nKMC < 1, El-Numodis steps out
of the dislocation nucleation loop and continues with its usual workflow. This process is
repeated every El-Numodis timestep.

In summary, the simplified dislocation nucleation approach relies on the variables Wait-
Time and StepFlag that embody the competition between the regular nucleation frequency
imposed by the system and the possible reactivation of shutdown nucleation sites that
updates the number of KCM calls per DDD timestep nKMC each time a dislocation nu-
cleation event happens.
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Dislocation nucleation in El-Numodis

5.2.1.3 Applications

(a) (b)

c1
c2
s

Figure 5.3: Dislocation nucleation simulation (simplified approach) in a Cu cuboid deformed at 1 GPa applied
stress and at T = 250 and 650 K, (a) cumulative probability computed at corners (c1 and c2) and mid-surface
(s) sites, (b) Plastic strain (blue and red) and dislocation length (yellow and green) computed a WaitTime =
60 steps.

Here again we use our simulation framework made of a copper cuboid sample with the
three nucleation sites described in Table 5.1 using normalized coordinates. In this example,
dislocation nucleation is restricted to surfaces (heterogeneous case) where quarter and half
dislocation loops can nucleate from corners/vertical edges and surfaces/horizontal edges
respectively, propagating into the sole 1

2 [101](111) slip system2. The sample is meshed with
regular eight nodes hexahedrons and the BVP stress correction is performed by Elmer only
(no pseudo-mirror dislocation construction used). Compression simulations are performed
at temperatures of 250 and 650 K under a constant applied stress of 1 GPa and Tm =
700 K. WaitTime is set to 60 steps and δtDDD = 0.05 ns. Figure 5.3 (a) shows the initial
dislocation nucleation probability per site (i.e., without site off) for both temperatures as
computed using equation 5.1. As shown in Figure 5.4, SDN can only happen from the
two corners sites at T = 250 K. The probability calculated for c1 and c2 are both about
Sc1,c2 ∼ 0.5 while Ss = 6.47× 10−5 i.e., there is no chance to observe dislocation emitted
from site s in this case, as confirmed by simulation snapshots shown in Figure 5.4.
Figure 5.4 shows again the competition between the WaitTime and StepFlag variables.
The first nucleation event occurs at WaitTime = 60 and at site c1 (blue point), selected

2Note that homogeneous dislocation nucleation was also developed in the context of this study based
on the nucleation of dislocation loops, using the same strategy than the one applied for the heterogeneous
case.
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Chapter 5 – Compression of MgO nanoparticles

randomly by the KMC among the 3 available sites. At this stage, the recalculation of
nKMC provides a value smaller than zero, what precludes additional nucleation attempts
during the current timestep. Moreover, the calculation of StepFlag shows that the next
nucleation event should take place after eight steps, as it is shown in Figure 5.4 (b). This
nucleation event takes place compulsory at site c2 (red point), as the probability of nu-
cleation at site s is still small for low-T and the site c1 is shutdown for a number of steps
equal to WaitTime since the first nucleation event. Then, nucleation periodically happens
and the c sites alternate continuously with nucleation events every each 60 steps (Figure
5.4 (a, c, d, f, g, i)); with a second attempt after 8 steps (Figure 5.4 (b, e, h)). Figure
5.3 (b) shows the evolution of the plastic strain and the dislocation density evolution as
function of the simulation step from which dislocation nucleation events can be identified
by the hints on the dislocation density curves.

(a) (b)

(d) (e)

(g) (h) (i)

(f)

(c)

60 68 120

180 188 240

300 308 360

[100]

[010]

[001]

Figure 5.4: Dislocation nucleation at the surface of copper cuboid under compression using El-Numodis at
low temperature (250 K). Dislocation quarter loops are nucleated from the two predefined nucleation sites at
corners (c1 and c2, respectively blue and brown dots). Red arrows illustrate particular features commented in
the text. The number at the top of each sub-figure relies on the simulation step.

As expected from the TST, nucleation at site s is observed at higher temperature i.e.,
at T = 650 K, where Sc1,c2 = 0.37 and Ss = 0.26. Simulation results are illustrated in
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Dislocation nucleation in El-Numodis

Figure 5.5. At T = 650 K, the first nucleation event occurs after 60 steps as conditioned
by WaitTime. At this temperature, the nucleation probability at site s increases and nu-
cleation becomes favorable (Figure 5.5). After the first and second nucleation attempts,
nKMC remains >1. It only starts to decrease once the three sites have been requisitioned
at least once for dislocation nucleation. Dislocation nucleation from the three sites occurs
every 60 steps during the whole simulation as shown in Figure 5.5. Raising the tempera-
ture here does not just increase the nucleation probability at site s but also the nucleation
rate. Also, this simple toy simulation with a simplified nucleation algorithm already shows
some particular features as the displacement of the dislocation embryo near site s (Figure
5.5 (d)) leading to the collapse of the dislocation (Figure 5.5 (d,e)). Also, the dislocation
nucleated at site s at step 300 asymmetries rather than opening in a circular fashion and
drifts along the surface along the [01̄1] direction. At step 360, a new nucleation event from
site s leads to the merging (annihilation/recombination) of the previous two dislocations.

(a) (b)

(d) (e)

(g) (h) (i)

(f)

(c)

60 120 180

229 240 300

360 366 400

[100]

[010]

[001]

Figure 5.5: Dislocation nucleation at the surface of copper cuboid under compression using El-Numodis at
high temperature (650 K). Quarter dislocation loops are nucleated from predefined nucleation sites at corners
(c1 and c2, respectively blue and brown dots), half-loops are nucleated at site s (orange dot).
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Chapter 5 – Compression of MgO nanoparticles

5.2.2 Extended approach: application to MgO nanoparticles

In the rest of the PhD manuscript, we use El-Numodis to model dislocation nucleation
during MgO nanoparticle deformation under compression. For that purpose, we built an
extended version of the nucleation algorithm especially designed for constant strain rate
simulations. One of the specificity of the extended dislocation nucleation algorithm is
that it can integrate ∆G0,i SDN databases, computed for MgO NPs at the atomic scale
by Amodeo et al. [AMO 21a]. In this section, we first introduce the work of Amodeo et
al. where the problem is investigated at the atomic scale before describing the extended
dislocation nucleation algorithm.

5.2.2.1 Introduction to atomic-scale dislocation nucleation in MgO nanopar-
ticles

As already emphasized in the work of Issa et al., the extremely high strength of ceramic
nanocrystals under compression arises from the necessity to nucleate highly energetic dis-
locations, presumably from the sample surfaces [ISS 15]. Nevertheless, the work of Issa et
al. focusing on MgO NPs under compression is marked by the difference of several orders
of magnitude between experimental and MD strain rates (see Chapter 1 for more details).
To bypass MD limitations, Amodeo et al. used an original multi-steps NEB approach to
compute the activation energy of SDN in MgO NCs as a function of the dislocation center
position [AMO 21a]. Amodeo and co-workers derived dislocation activation energies per
site ∆G0,i and radii rc,i maps and used them together with the TST to predict nucleation
rates.

The multi-step nudged elastic band approach

Amodeo et al. first computed the NEB minimum energy path for the nucleation of a
dislocation at the lateral surface of a Lx = Lz = 7.5 nm and Ly = 15 nm wire, before
refining the path calculation after slicing the wire in several NCs to get the desired dis-
location centre location (Figure 5.6). Simulations are performed for an applied strain of
11.1 % i.e., the critical strain for SDN reported by Issa et al. [ISS 15] in MD simulations
at 108 s−1 strain rate. By this two-steps slicing approach, the dislocation nucleation pro-
cess is monitored and happens from selected sites characterized by vertical and horizontal
coordinates (referred as yi/L and hp/L) following a grid point-to-point process. Examples
of relaxed NEB minimum energy paths for dislocation nucleated at hp/L = 0.75 and dis-
tances yi/L = 0.0 to 0.5 at 0 K are shown in Figure 5.6 (b) with activation energies ∆G0,i

varying from 0.8 to 1.1 eV. Note that Amodeo’s ∆E and k corresponds in this manuscript
to ∆G0 and ν respectively.
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Dislocation nucleation in El-Numodis

Figure 5.6: Multi-steps NEB approach used to compute energy barriers for SDN in MgO nanocubes. (a)
Top: MgO wire starting configuration as compressed by a flat indenter along z with free BCs (FBCs) along x
and y directions. Bottom: illustration of typical cube carved out from the original wire showing a dislocation
loop with nucleation radius rc nucleated from the middle of a lateral (100) surface, (b) example of surface
dislocation energy barriers for normalized lateral position yi/L ranging from 0 to 0.5 and normalized vertical
position hp/L = 0.75. (c) Examples of configurations for dislocation nucleation at corners, mid-top edge,
mid-side edge and the lower mid-surface. From [AMO 21a].
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Chapter 5 – Compression of MgO nanoparticles

Atomic-scale description of dislocation nucleation energy and rate in MgO nanoparticles
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Figure 5.7: 1
2 〈110〉{110} slip systems in MgO.

Considering the symmetries of both the sample and the mechanical test (Schmid fac-
tors), Amodeo et al. computed the activation energy for SDN on a surface grid for a single
1
2〈110〉{110} slip system (while 4 are available) and then use symmetries to 1) fulfill the rest
of the current surface, 2) derive the activation energy for other surfaces and 3) intuit the
activation energy of other symmetric slip systems (actually two orthogonal 1

2〈110〉{110}
slip systems per surface are favored). 1

2〈110〉{110} slip systems in MgO are described
in Figure 5.7. Note that under 〈100〉-uniaxial compression, two of the 1

2〈110〉{110} slip
systems have a Schmid factor equal to 0. This process allowed to build the full map of
the activation energy along the boundaries of the NC as shown in Figure 5.8. The multi-
steps NEB approach shows that the nucleation of 1/4 dislocation loops at corners and side
edges are particularly favorable as well as 1/2 loops nucleated deep in the middle surfaces
(Figure 5.8 (b)).

Higher values of ∆G0,i are observed for the rest of the surfaces that is also character-
ized by forbidden sites, where no stable SDN events were shown by the multi-step NEB
approach. Note that under the uniaxial compression conditions, no dislocation were con-
sidered to emerge from the top and bottom surfaces of the NP due to BCs. For the slip
system S1 (Figure 5.8 (a)), the bottom region of the NC is particularly unfavorable and
dislocations rather nucleate in the orthogonal slip system S2. Finally the authors used
the TST to compute dislocation nucleation rate at 300 and 1000 K as shown Figures 5.8
(c,d) and interpret previous MD observations made in MgO nanocubes [ISS 15].

5.2.2.2 Extension of the dislocation nucleation algorithm

Site and local stress dependence

To account for the site dependence of dislocation nucleation in El-Numodis, we have
upgraded the simplified dislocation nucleation approach to account for local stress vari-
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Dislocation nucleation in El-Numodis

Figure 5.8: Maps of the activation energy and rate for SDN in an MgO NC at 0 K and 11 % strain. (a) grid
description and activation energy in slip system S1, (b) activation energy for S1 per nucleation sites (in color)
and the forbidden sites (hatching), (c) Dislocation nucleation rate at 300 K for S1 and S2 (d) same at 1000 K.
From [AMO 21a].
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Chapter 5 – Compression of MgO nanoparticles

ations and manage energy databases (no artificial site kill anymore when compared to
the simplified approach). In this extended approach, the local stress is retrieved at each
nucleation site (before and after nucleation) and is used to compute νi based on local ∆G0

and then δtKMC when solving the BVP. This approach also means that once a dislocation
is nucleated, the stress at and around the nucleation site is reduced (see example in Figure
5.9) impacting directly the updated value of δtKMC . Moreover, the probability to nucleate
a new dislocation in the affected region becomes lower, up to the next increase of the local
stress.

[100]

[010]

[001]

-34

-60

-50

-40

-70

Stress_zz (GPa)Lege

Dislocation line

Figure 5.9: Local stress reduction induced by the nucleation of a 1
2 [110](1̄10) dislocation in a 4.2 nm edge

size MgO NP. Dislocation nucleation happens here at σzz =38 GPa stress while the local stress around the
nucleation center is reduced down to 34 GPa.

In the extended nucleation algorithm, the condition to have a nucleation event is
achieved by comparing two timescales i.e., the simulation time tDDD and the nucleation
time tKMC (Figure 5.10). The new algorithm workflow is presented in Figure 5.10. Before
detecting if a nucleation event should happen or not the previous quantities are updated
using equations tKMC = tKMC + δtKMC and tDDD = tDDD + δtDDD. The extended al-
gorithm proceeds to check if the nucleation condition is fulfilled testing tDDD > tKMC . If
false, the algorithm steps out and the simulation continued with a regular DDD step else
the KMC algorithm is called. Several slip systems can be accounted using this method
once their relative ∆G0,i is defined (assuming an additional KMC step). Each time a
dislocation is nucleated, tKMC is updated and the algorithm rechecks if tDDD > tKMC

and continue to proceed as shown in the workflow.
Thus, the extended algorithm can also handle situations where only one or several disloca-
tions are nucleated during a single timestep due to the compulsory recalculation of tKMC

after every nucleation attempt.

Nucleation sites and databases

The extended version of the nucleation algorithm allows to account for ∆G0,i and rc,i
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Figure 5.10: Extended dislocation nucleation algorithm implemented in El-Numodis. The extended model is
used for constant strain rate simulations and accounts for more realistic local stress variations.
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Chapter 5 – Compression of MgO nanoparticles

using fitting equations or grid data. Based on the multi-step NEB data of Amodeo et
al. [AMO 21a] computed at ε = 11.1 % and additional data computed at at 7, 8, 9.1
and 10.1% strains3 computed by Amodeo and collaborators, we built a database with
normalize nucleation centre coordinates, ∆G0,i and rc,i as function of stress to be used by
El-Numodis. Using the data at various strains and derived nucleation stress, ∆G0,i and rc,i
were adjusted as function of stress for each nucleation site using a Kocks model (equation
5.10) and a linear law, respectively. Note that here we assume the equivalence between
the critical compression stress and the local critical stress at site i due to the cubic shape
of the sample that suggests homogeneous stress distribution under compression (see e.g.,
[KIL 18, AMO 21b]).

(b)(a)

[010][100]

Figure 5.11: Design of the dislocation nucleation database for dislocation nucleation in MgO NPs. (a) All the
sites considered in the database, (b) Nucleation sites on the lateral surfaces after the filtering process. Blue
and green solid circles refer to the slip systems illustrated in Figure 5.7. Surrounded circles refers to the sites
were two conjugate slip systems are available.

The original data of Amodeo include effective and forbidden nucleation sites (similar
to the one of Figure 5.8 (a)) and is composed of discrete points arranged in 7 glide planes
that intercepts the external surfaces with z at hp/L equals 0.01, 0.1, 0.25, 0.5, 0.75, 0.9 and
0.99 (Figure 5.11 (a)). For certain points along hp/L = 0.25, hp/L = 0.5 and hp/L = 0.75,
a second slip system with its relative ∆G0,i and rc,i is provided (points surrounded with
red and orange circles in Figure 5.11 (b)), as in the work of Amodeo et al. [AMO 21a].
One should notice the reduced number of points available in Figure 5.11 (b) due to 1)
the presence of forbidden sites [AMO 21a] and 2) a nucleation point i is removed from
the database and not considered in the nucleation algorithm if it has less than 2 values
of strains (over the 5 investigated by Amodeo). This is because nucleation sites are de-
pendent of the strain values. Moreover, to lead to a stable ∆G0,i, more than 2 points are
required for the fitting procedure (see Figure 5.13). Activation parameters are stored in

3Corresponding nucleation stresses are of about 18.9, 23.6, 28.1 and 33.2 GPa increasing the strain.
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Dislocation nucleation in El-Numodis

the two tables MainDB that contains site information for the primary slip system and
OptDB that relies on the second one.

Here we reprocessed the data to integrate them as an El-Numodis database. As in the
original work of Amodeo et al., data are first treated on a grid subset and then further
extended to the entire sample using symmetries (Figure 5.12). ∆G0,i and rc,i were inter-
polated on the strain range investigated by Amodeo et al. and then extrapolated. One
can note that low strain data might be characterized by significant discrepancies due to
the lack of data below ε=7 %. However, these should have a limited impact as we will see
that the nucleation probability radically decreases at lower stress.

∆Gi(σ) = ∆G0,i[1− ( σ(ε)
σath,i

)pi ]qi (5.10)

where σath,i is an athermal stress and pi and qi are dimensionless activation parameters.

(a) (b)

Figure 5.12: Surface symmetries and construction of the dislocation nucleation site database, (a) Different
marking to all possible points per nucleation plane inside the rectangle subgrid. (b) nucleation sites (blued dots)
used for the database generated at 7.0, 8.0, 9.1, 10.1 and 11.1 % strain. The red circles refer to sites where
two orthogonal slip systems are available. The black rectangle illustrates the subgrid where atomistic data ∆G0

and rc were originally computed by Amodeo et al. [AMO 21a]. The rest of the data are mirrored out of the
rectangle in the [001] and [100] directions.

The Figure 5.13 shows fitting examples for∆G0,i and rc,i computed at the (hp/L = 0.01,
yi/L = 0.01) nucleation site. For ∆G0,i, the fitting procedure shows that the parameter q
is in all cases between 1.0 and 1.1. For the sake of simplicity during this study we assume
q = 1 as it was done in [ZHU 08]. In this case, fitting results give ∆G0,i = 39.99 eV,
σath = 23.82 GPa and pi = 2.78 with R2 = 0.99 and R2

adj = 0.96. On the other hand,
rc,i = miσ + ni is fitted here with m=-1.21 Å/GPa and n = 33.44 Å with R2 = 0.87.
Two databases are finally created i.e., one with the data for all sites and their primary
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Figure 5.13: Examples of activation parameter fits in function of the shear stress (i.e., half the compressive
stress) with (a) ∆Gi,0 using a Kocks law and (b) rc,i using a linear equation.

slip system and a second one with the information related to the additional slip system
(yellow and red circles in Figure 5.11 (b)).

5.3 Mesoscale modeling of dislocation nucleation in MgO
nanoparticles under compression

5.3.1 Deformation at extreme strain rate

In this section, El-Numodis is used to model nanocompression tests of MgO NPs at
constant strain rate using the atomistically-informed database for SDN presented in the
previous section. Results are compared to MD simulations for NCs with size ranging
from 4.2 to 12.6 nm [ISS 15]. The samples are meshed using 20 × 20 × 20 eight nodes
hexahedrons refined at the edges (see Figure 5.9 as reference) with “using Bump=0.05”
Gmsh algorithm. As in the previous case, the stress correction when solving the BVP is
performed using SPM without the mirror image dislocation method. A viscous mobility
law was used with a damping coefficient B = 5 × 10−4 Pa·s. Poisson ration and Young’s
modulus were set to 0.18 and 275.43 GPa, respectively. As in the former MD, El-Numodis
simulations are performed at a strain rate of 108 s−1 at room temperature using δtDDD =
1 ps (this latter being about 1000× larger than the MD timestep). Tm = 1550 K is used
as in Amodeo et al. [AMO 21a]. In the aforementioned conditions of deformation, both
the MD on one side and the TST associated to NEB energy barriers (Equations 5.1 to 5.6)
on the other side predict a nucleation stress of about 38-40 GPa [AMO 21a]. Therefore,
here we run El-Numodis with an initial applied stress of 30 GPa what allows to reduce the
CPU costs in the initial linear elastic regime, where, theoretically, no dislocation should
nucleate in MgO NCs at the MD timescale.
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Mesoscale modeling of dislocation nucleation in MgO nanoparticles under compression

5.3.1.1 Mechanical response

The stress-strain curves and temporal evolution of the plastic strain are illustrated in
Figure 5.14, as function of the sample size. Stress-strain curves are characterized by an
initial elastic load up to a first stress peak that corresponds to the first dislocation nucle-
ation event i.e., at about 38 GPa and 11 % strain. Assuming the difference of BCs between
SPM (applied strain BCs) and MD simulations (displacement-controlled indenter forced
field), yield stress and critical strain computed by the two methods are in particularly good
agreement (Figure 5.15). As for MD, SPM results show a particularly limited size-effect
on the yield stress possibly induced by the cubic shape of the sample that is believed to
avoid any size-effect due to homogeneous stress distribution within the whole sample under
uniaxial compression [AMO 17, KIL 18, AMO 21b]. After the first dislocation nucleation
events, the stress decreases as constrained by the feedback loop after a significant amount
of strain was produced in a limited period. Once the dislocations escape the sample, the
stress increases again (elastic reload) up to the next nucleation events. One can note
that at such high strain rate, subsequent stress peaks for nucleation are strictly compara-
ble to the original one using SPM, emphasizing the weak probabilistic propensity of the
dislocation nucleation mechanism at high strain rate. Also, these results slightly differ
from MD where post-yield surface modifications induced by dislocation shearing modify
the activation energy landscape at the surface (effect not yet accounted in El-Numodis).
Besides, the main differences between SPM and MD outcomes arise from the amplitude
of the stress drops, especially after the first nucleation event, that show minimum stress
values ranging from 27 to 17 GPa in El-Numodis, while lower values of about few GPa are
obtained in the MD. In our opinion this difference is due to the difference of dislocation
velocities between the two simulations as well as to the different kinds of BCs. The former
can be corroborated by changing the value of the drag coefficient of the mobility law.

5.3.1.2 Corner dislocation nucleation

At room temperature and extreme strain rate, El-Numodis simulations show dislocation
nucleation from corners (without preferential corner) whatever the sample size, as shown
in Figure 5.16. This behavior can be interpreted using the same arguments than for the
3-sites copper NC described in section 5.2.1.3 i.e., the difference between ∆G0,i at the
various nucleation sites is too large to allow nucleation elsewhere at such low temperature.
So, the KMC method just ensures that one of the 8 corners is selected only based on its
activation energy and local stress (that changes once the first dislocations nucleates). It is
important to recall that each corner provides the possibility to nucleate dislocations into
two different slip systems.
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Figure 5.14: Mechanical response of MgO NPs under compression at 108 s−1 strain rate for various sample sizes
at room temperature using SPM and El-Numodis as compared to MD simulations. (a) SPM stress-strain curve,
(b) SPM plastic strain versus time. (c) MD stress-strain curves computed using LAMMPS (from [ISS 15]).
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Figure 5.15: MgO NCs yield strength versus sample size: SPM (El-Numodis) vs. MD (LAMMPS).
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Figure 5.16: Corner dislocation nucleation at the yield stress in various sizes MgO NCs deformed at a constant
strain rate of 108 s−1 and room temperature using El-Numodis.
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Simulation results of Figure 5.16 show that the number of dislocations that nucleate
after the yield point raises when increasing the sample size. For instances, only one dislo-
cation is nucleated for samples of 4.2 and 5.9 nm edge size at the yield point, while three
dislocations nucleate for the 7.6 and 10.1 nm. Also, four (or more) dislocations nucleate
for the sample of 12.6 nm. In this last case the four dislocations are generated starting
by two nucleation events at the same timestep, when the applied stress reaches the yield
stress. The last two dislocations (red arrow, Figure 5.16) also nucleate during the same
DDD timestep, but three DDD steps after the first nucleation event. In addition to their
velocity, the amount of dislocations that nucleate impact the magnitude of the stress drop
of Figure 5.14 (a). When a dislocation nucleates and expand crossing the sample, the total
plastic strain generated is proportional to the area swept by the defect.
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Figure 5.17: Dislocation microstructure and stress-strain curve for the 10.1 nm MgO NC deformed using
El-Numodis at imposed strain rate (108 s−1) and room temperature.

Figure 5.17 shows the evolution of the dislocation microstructure at different stage of
the stress-strain curve for the 10.1 nm NC. At 37.1 GPa (label 1) two 1

2 [011](01̄1) and one
1
2 [101](1̄01) dislocations nucleate from the corners of the sample. The plastic strain pro-
duced reduces the external load but the stress remains large enough to ensure dislocation
glide. The two dislocations glide in parallel planes separated by a very small distance.
The dislocations attract each other and the interaction produces a loop (step 2) inside the
NC. The dislocation loop portion is attracted by one of the lateral surfaces by action of
the images forces (step 3) where it is divided into two dislocations arms. The dislocation
microstructure continues to evolve until each dislocation arm escapes the sample. At this
stage, the applied stress starts to increase (due to the lack of dislocation in the sample) up
to the nucleation stress where another nucleation event is noticed (step 4). This time, only
one 1

2 [101](1̄01) dislocation nucleates at the bottom of the sample, exactly at the same
site where one of the previous dislocation was nucleated. This is traduced in a smaller
stress drop on the stress-strain curve due to the relatively small amount of plastic strain
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Mesoscale modeling of dislocation nucleation in MgO nanoparticles under compression

induced (see Figure 5.14 (b)). Indeed, as shown Figure 5.14 (b) strain is produced by
increments of various amplitudes, that, in average, obey the imposed strain rate. The
dislocation escapes the sample and the stress increases again until a new 1

2 [011](01̄1) dis-
location nucleates. At the same time, another 1

2 [101](1̄01) dislocation nucleates (step 5)
in one of the top corners. This process composed of stress increase-nucleation-dislocation
glide-dislocation starvation-stress reload repeats until step 6 where only one dislocation
nucleates. It is important to notice the similitude between the corner nucleation observed
in SPM and MD and the observations made in in situ TEM experiments shown in Figure
5.18.

Figure 5.18: in situ TEM image of corner dislocation nucleation in MgO NP. Image from [AMO 21a].

5.3.2 Towards experimental conditions of deformation

5.3.2.1 Influence of strain rate

In this section, we focus on the influence of strain rate and temperature on the nucle-
ation process. For this purpose, we use small MgO NPs to reduce the CPU costs but we
assume that the conclusions drawn here should not depend on sample size assuming the
deformation operates within the dislocation nucleation/exhaustion regime. The influence
of size will be discussed in a next section.
To study the influence of the strain rate on the yield strength, a 4.2 nm edge size MgO
NC similar to the one described in the previous chapter, is deformed using different strain
rates ranging from typical MD 109 s−1 down to 10−2 s−1, closer to laboratory conditions
of deformation. For these simulations, the adaptive δtDDD timestep varies from 1 ps to
10 ms decreasing the strain rate4. Results are presented in Figure 5.19.

4Please note that Numodis timestep is further reduced when a dislocation is about to react locally with
an obstacle or when a node wants to move on a wide distance
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(a) (b)

ε (s-1)
.

Figure 5.19: Mechanical response of a 4.2 nm MgO NC deformed at different strain rates using El-Numodis at
room temperature. (a) strain-stress curves. (b) yield strength variations with strain rate.

Typical of sub-10 nm nanocrystals in MD, only one dislocation nucleates at the yield
point and accommodates sole the whole plastic strain at high strain rate using El-Numodis
and the SPM method. Surprisingly, a similar behavior is observed down to the lower strain
rates where dislocation nucleation also happens randomly from one of the eight corners
of the sample, independently from the strain rate. The plot of Figure 5.19 (b) shows the
decrease of the yield stress with the strain rate i.e., a variation of the yield stress ranging
from 39.52 down to 34.59 GPa is noticed on the investigated strain rate range, equivalent
to a yield stress decrease of about 13 %.

The plastic strain increment δεp produced by a single dislocation gliding in a {110}
slip plane passing through a nanocube of edge length L side-to-side is equal to,

δεp = hp(L)b.
√

2
L2 (5.11)

where hp(L) (ranging from 0 to L) relies on the height from which the slip plane intersects
the sample lateral surface.

Thus, the maximum of δεp produced by a dislocation in the aforementioned case is
about δεp = b.

√
2/L =∼10 %. At the yield stress, the dislocation velocity is the 10 000

m/s range assuming a viscous law and a damping coefficient B = 5× 10−4 Pa·s. At such
extreme velocity, the dislocation will cross the 4.2 nm edge length sample within few hun-
dreds or thousands MD timestep (N.A.: about 6 ps while MD timesteps are commonly
about 0.001 ps). This suggests that the instant strain rate at the yield point is about
105 − 106 s−1, only compatible with MD feedback control and way larger than experi-
mental expectations, explaining by the way why we always see only one dislocation in
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Mesoscale modeling of dislocation nucleation in MgO nanoparticles under compression

aforementioned simulations. Of course increasing the NP size would decrease δεp but only
linearly, what would still make the plastic strain achieved by a small amount of dislocations
consequent in larger nanoparticles. On the other hand, the corner constant location is as-
sociated to the low temperature (300 K) as previously discussed. This outcome helps to
understand mechanical instabilities associated to strain bursts (or load drops) in nanome-
chanical experiments.
The particularly large energy barrier for dislocation nucleation in MgO and other ceramics
(over 1 eV, about ten times larger than in fcc metals) is partly responsible for the large
nucleation stress. While the sensitivity of nucleation stress to the strain rate enters a
log term in the classical TST (see equation 5.6), it is known to significantly change the
nucleation stress in metal nanocrystals with variations sometimes about 50 % (1-5 GPa)
when decreasing the strain rate from the MD range to the experimental one (see e.g., in
Cu [ZHU 08]). Here we show that the influence of strain rate on the nucleation stress in
ceramics MgO where highly energetic dislocations have to be nucleated is way lower and
there is finally not much differences in terms of nucleation stress when passing from MD
conditions of deformation to laboratory one. Implicitly, these results strongly encourage
the use of MD to study incipient plasticity and dislocation nucleation processes in ceramic
nanocrystals, even more than NEB or atomistically-informed mesoscale method especially
when no further information on the dislocation dynamics are required. In the next section,
we continue our investigations on the nucleation regime describing temperature effects.

5.3.2.2 Influence of temperature

Here we used the same aforementioned setup to investigate the effect of temperature on
the mechanical response MgO NCs. Simulations are performed at 5, 300 and 1000 K for
two different strain rates i.e., 108 and 10−2 s−1, MD and experimental nanocompression
ranges respectively.
Here we assume a viscous dislocation mobility law whatever the temperature range. While
this choice can be slightly controversial if we bear in mind that MgO 1

2〈110〉{110} slip sys-
tems exhibit lattice friction up to 600 K (see Chapter 1), we assume that the mobility
should not be thermally-activated anymore while stress widely overshoots the GPa stress
range. So, without more information on dislocation mobility in this extreme-stress regime,
a viscous mobility law with a constant (and arbitrary) B = 5×10−4 Pa·s damping coeffi-
cient is used whatever the temperature, as in the simulations presented in section 5.3.2.1.
The elastic constants were not changed with temperature variations.

Stress-strain curves are presented in Figure 5.20 and examples of dislocation microstruc-
tures at the yield stress are shown in Figure 5.21. For ε̇ = 108 s−1 and T = 5 K, only one
1
2 [101](1̄01) dislocation is nucleated at the center of a lateral surface near the top of the
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(a) (b)

.
ε=10-2 s-1.

ε=108 s-1.

Figure 5.20: Mechanical response of 4.2 nm sized MgO NCs under compression as function of temperature
and strain rate computed using El-Numodis, (a) 108 s−1 (MD range), (b) 10−2 s−1 (experimental range).

sample at a yield stress of 45.8 GPa. One can notice that in this case, we easily observe
dislocation nucleation in the orthogonal slip system i.e., the dislocation does not glide
in (101) but (1̄01). The total amount of plastic strain accommodated by this dislocation
once it propagates and leaves the sample is of particularly small amplitude (as shown by
the small stress drop of Figure 5.20 (a)) due to do both the location of the nucleation site
and the chosen slip system. As consequence, the elastic reload is particularly short and a
second dislocation nucleates once the stress reaches the 45.8 GPa. This time, nucleation
occurs from one of the corners and produce a larger amount of plastic strain as well as an
extended stress drop.

At 300 K, a single dislocation also nucleates from one of the corners but at lower
yield stress (38.8 GPa). The dislocation analysis and the stress-strain curve reveal the
subsequent nucleation of another single dislocation after the elastic reload and the first
dislocation escapes the sample. At T = 1000 K, four dislocations nucleate simultaneously
at 32.6 GPa; two from corners and two from edges. This nucleation/glide event is cor-
related to the larger stress drop observed during the simulation (Figure 5.20 (a)). The
following nucleation events only show single dislocation nucleation from the corners.

The same kind of simulations performed at ε̇ = 10−2 s−1 show a comparable behavior
under temperature with only single dislocation that nucleates from the surfaces and yield
stress that reduces from 44.8 to 26.0 GPa while the temperature increases (Figures 5.20
(b) and 5.21 (d-f)). Thus, as shown in the previous subsection, decreasing the strain rate
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Figure 5.21: El-Numodis simulations of dislocation nucleation in a 4.2 nm edge size MgO NCs under compres-
sion computed at 5, 300 and 1000 K at (a-c) 108 s−1 and (d-f) 10−2 s−1 strain rates.

slightly decreases the yield stress with a larger impact at high temperature.
The stress reduction observed during the simulations at various temperatures suggests

that increasing the temperature produces a weakening of the material. Indeed, the nu-
cleation stress is significantly temperature sensitive as can be seen in Figure 5.22. For
larger strain rate (ε̇ = 10−8 s−1) the nucleation stress drops of 30 % between 5 and 1000
K. While for slower strain rates, the stress differences increases up to a 42 % in the same
temperature range. These results can be compared with those obtained for FCC metal
NWs [ZHU 08] even if in the case of MgO ceramics, the influence of strain rate remains
limited at room temperature. From equation 5.6, we can relate explicitly the dependence
of the nucleation stress with the strain rate and temperature. T stands in and outside the
log term (in the contrary to ε̇ that only stays in) what implies that the nucleation stress
is more sensitive to T when compared to the strain rate, and this effect is stronger when
the activation volume Ω = bA (with A the critical area covered by the freshly nucleated
dislocation) is small, like in SDN events at large stress. So, small activation volume also
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Figure 5.22: MgO NCs yield stress dependence on temperature and strain rate as computed by El-Numodis.

accounts for the stress reduction observed in Figure 5.19 in simulations computed at var-
ious strain rates.

The temperature also affects the location where dislocation nucleation takes place. In-
deed, we have shown in section 5.2.1.3 that temperature affects the nucleation probability
at all sites. Here in the cases of sub-10 nm MgO NCs, the number of lateral surface nu-
cleation sites is larger than the one of corner and edges sites while their activation energy
is often about 10× larger. So, even at higher temperature, we still observe lots of SDN
events incoming from corners and edges (at this sample size).

All along the two previous subsections, we have discussed the role of strain rate, temper-
ature and their association on the yield strength of ceramic MgO NPs under compression.
These simulations were performed in a particularly small volume that we believe does not
impact the results while discussing the dislocation nucleation/exhaustion regime. In the
last subsection of this chapter, we start investigating the role of size on this same regime
of deformation in order to approach NPs size investigated in the experiments.

5.3.2.3 Size-effects and limitations

To study the role of sample size on the mechanical properties of MgO ceramic NPs,
several cubic shaped samples with size ranging from 25 to 250 nm were designed. Here we
use the same 20 × 20 × 20 number of elements refined at the edges and corners but with
a scalable characteristic size. The number of nucleation site remains constant whatever
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the sample size. Usual tests with larger numbers of elements were performed without
quantitatively changing the results. Here we use the same material properties and BCs
than those used in the previous simulations presented in the manuscript. Three strain
rates are tested i.e., 1, 104 and 108 s−1 with δtDDD ranging from 10 µs to 1 ps raising the
strain rate.

ε̇ (s−1)
Sample size (nm)

25 50 75 100 150 200 250
108 38.88 39.61 39.91 - - - -
104 37.33 37.46 37.47 37.50 37.28 - -
1 35.60 35.61 35.72 35.70 35.72 35.90 -

Table 5.2: Yield stress values (GPa) for simulations performed at three different strain rates for sample size
ranging from 25 to 250 nm. "-" refer to instabilities related to the saturation of the nucleation process.

Yield stress as function of sizes and strain rates are presented in Table 5.2 where
stress does not vary explicitly with size. These results confirm the absence of size-effect
on the yield stress in MgO NCs. While this result contradicts the experiments of Issa
et al. [ISS 15, ISS 21], it corroborates the thesis formulated in [AMO 21b, KIL 18] and
the recent experiments of [CHE 22], this later having confirmed a yield stress of about
33 GPa for 60 nm edge size MgO NCs using in situ TEM nanocompression, comparable
to theoretical predictions. For the 25 nm edge size NC, the yield stress is about 38.9,
37.3 and 35.6 GPa decreasing the strain rate. The number of dislocations nucleated at
the yield stress are shown in Table 5.3 and we can observe that the larger the NP, the
larger the number of dislocations that nucleate. Here in the 25 nm edge size sample, the
number of dislocations that first nucleate is respectively 12, 5 and 1, decreasing the strain
rate. For the 50 nm sample, the yield stress does not vary so much when the compared
to the smaller sample i.e., 39.61, 37.46 and 35.61 GPa decreasing the strain rate (differ-
ences lower than 2 %). However, the number of dislocations that nucleate at the yield
stress increases from 12 to 18 at 108 s−1 strain rate. These numbers can be discussed
regarding the number of dislocations nucleated for samples size ranging from 4.2 (1 dis-
location) to 12.6 (4 dislocations) nm deformed under the same conditions of deformation
(see Figure 5.16). This effect is even more dominant in 75 mm edge size sample with a
number of dislocation increasing from 1 to 44 increasing the strain rate. Also, the num-
ber of dislocation nucleated is very sensitive to strain rate (in the contrary to the yield
stress) when the sizes increases and the SDN period at the yield strength is extended in
larger sample / lower strain rate. This result might have serious implications related to
size-effect in the experiments where it could be at the origin of the formation of disloca-
tion microstructure when mechanical instabilities develop at the yield point (strain burst).

To better understand the influence of size and strain rate on the SDN process, nucle-
ation in the 50 nm edge size sample is described in Figure 5.23. For the slower strain rates,
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Figure 5.23: Dislocation nucleation at the yield stress for a 50 nm edge dize MgO NPs at various strain rates.
The number of defects nucleated increase with the strain rate. the blue arrow show a dislocation nucleated few
steps before the red ones. The unmarked dislocations nucleate later on.

i.e., 1 and 104 s−1; 1 and 5 dislocations respectively nucleate at the yield point. The 5
dislocations nucleate at the same DDD timestep producing an immediate change in the
slope of the stress-strain curve (yield point) that in this case, is equal to the nucleation
stress. But it is different at ε̇ = 108 s−1 when the elastic load of the sample reaches the
nucleation stress, one dislocation is nucleated. The single dislocation propagates during
few simulation steps (4 steps) when 6 additional dislocations nucleate. After two DDD
steps, remaining dislocations are emitted and no further nucleation event is observed. This
peculiar behavior reflects the competition between tKMC and tDDD. The variable tKMC

is directly related to the activation energies and the applied stress (Figure 5.13). In sub-10
nm samples, the amount of plastic strain produced by a single dislocation that nucleates
is particularly large and induce a wild correction of the applied stress to not overshoot the
imposed strain rate. This not true anymore in larger samples where the amount of plastic
strain produced by a single dislocation is reduced drastically, and the correction to the
applied stress is almost zero. As a consequence, the applied stress continues to increase
after the first nucleation event following the imposed rate what impacts tKMC leading to
more SDN events. This situation repeats up to the moment when a large enough amount
of plastic strain is generated to correct the applied stress and tKMC reaches the off condi-

ε̇ (s−1)
Sample size (nm)

25 50 75 100 150 200 250
108 12 18 44 - - - -
104 5 5 6 15 28 - -
1 1 1 1 1 1 1 -

Table 5.3: Number of dislocations that nucleate at the yield stress as function of sample size and strain rate.
"-" refer to instabilities related to the saturation of the nucleation process.
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tion of nucleation.

Also, the δtDDD used as a simulation parameter impacts the equilibrium between tKMC

and tDDD. Here, due time constrains we sometimes had to use a slightly large timestep,
especially for low strain rate simulations assuming we will constrain the study to disloca-
tion nucleation and not to further dislocation dynamics. However, δtDDD also influences
the amplitude of the stress response. It means that using a small δtDDD might lead to sit-
uations where few dislocations are nucleated during one timestep while increasing it might
raise the the number of dislocation nucleated within a timestep, this having consequences
on the stress relaxation process (as already discussed). To test this hypothesis, five sim-
ulations were done (50 nm edge size sample) at high strain rate varying δtDDD from 0.1
to 10−5 ns. Results show statistical changes in the nucleation procedure (e.g., regarding
the number of dislocation appearing) but the final amount of dislocation nucleated and
the yield stress remain the same whatever the timestep used.

Nucleation and propagation

Masive nucleation and saturation

1 s -1

105 s -1

108 s-1

105 s -1

108 s-1

1 s -1

(a) (b)

Figure 5.24: Size-effects in MgO NCs under compression computed using El-Numodis. Effect size and strain
rate on (a) the yield stress (b) on the number of dislocations that nucleate.

Finally, increasing the size we have reached the limitations of the nucleation regime
(Figure 5.24). Indeed, El-Numodis feedback control conflicts for larger sizes and is not able
to satisfy the conditions of imposed strain rate i.e., all available nucleation sites are used.
As already discussed, the deformation is controlled by a low amount of dislocations for
lower sizes that is even diminished at low strain rate. However, increasing the dimensions
of the sample, more and more dislocations nucleate at the yield point up to a limit where
all the nucleation sites emit dislocations.
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At this stage, when the effective plastic strain produced is lower than the imposed
plastic strain, the applied stress continuously increases. The increase in the applied stress
reduces the radius of nucleated dislocations and the overall plastic strain produced is not
high enough for the SPM to reduce the applied stress (at the yield point). Also, parts of
the dislocations collapse due to image forces (and their small radius) and El-Numodis has
to nucleate new dislocations again. This regime is characterized by the black dashed line in
Figure 5.24. In the lab conditions of strain rate, this saturation process could be related to
the mechanical instabilities often observed at yield point in nanomechanical experiments.
Of course, here the method used is characterized by reduced number of nucleation sites
as compared to the experiments, but the drastically increasing amount of dislocations
required to plastify nanosamples with size over 100 − 200 nm could explain size-effects
observed in experiments, as e.g., the nucleation-to-multiplication transition observed in
MgO NCs at 200 nm critical size (see Figure 5.25) shown by Issa and collaborators [ISS 21].

(a) (b)

Figure 5.25: Nucleation-to-multiplication transition in MgO Ncs under compression, (a) Size-effect on the yield
stress , (b) dependence of the elastic strain on the normalize nanocube size. Figure form [ISS 21]

The simulations show that the saturation process is strain rate sensitive. For deforma-
tions using ε̇ = 108 s−1, the transition occurs between 75 to 100 nm for ε̇ = 104 s−1 and
ε̇ = 1 s−1, the transition occurs between 150 − 200 and 200 − 250 nm, respectively. At
higher strain rate, the number of dislocations increases drastically when increasing size.
This effect is moderated at lower strain rate down to a single dislocation nucleated for
the deformation at ε̇ = 1 s−1 in the 25 − 200 nm size range. At lower strain rate, the
increase of the applied stress is very slow, when a dislocation is nucleated the value of
tKMC is affected and no more dislocation needs to be nucleated. This allows the nucle-
ated dislocation to propagate long enough, creating a considerable amount of plastic strain
with almost no increase of the applied stress. Thus, lower rate simulations generate less
nucleation events. Then, when the transition size is reached the number of dislocation to
be nucleated increases drastically. This effect is particularly notable in lab conditions of
strain rate, where we go from a single dislocation to saturation between 200 and 250 nm
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size.

5.4 Conclusion

In this chapter, we introduced the dislocation nucleation algorithm integrated in El-
Numodis. Two approaches are presented: a simplified approach that is applied to a copper
test-case and an extended approach here applied to a more quantitative study: the de-
formation of MgO NCs under compression. In the first approach, SDN in the copper
cuboid relies on three nucleation sites (with various activation energies) that are used to
start investigating dislocation nucleation using TST and KMC under constant applied
stress. Two relatively lower activation energy values are assigned to two different corner
nucleation sites and one higher value is used for a mid-surface nucleation site. By direct
implementation the TST equations into a MATLAB script, it was possible to study the
evolution of the probability density of individual nucleation sites based on their activation
energies before and after nucleation events. For instance, sites with lower activation en-
ergies have shown a larger probability densities and vice versa. Besides, the shutdown of
nucleation sites (once nucleated) tends to increase the nucleation probability within the
remaining ones.
After preliminary tests, a simplified dislocation nucleation algorithm was implemented in
El-Numodis. It consists on a simple scheme where the applied stress is considered to be
homogeneously distributed trough all the sample. In this simplified approach, the nucle-
ation is calculated using TST accounting for a “waiting time” after a nucleation event
(site shutdown) to avoid repetitive nucleation from the same location. The simulation was
applied at two different temperatures using ∑Si = 1 to ensure successful nucleation.
An extended version of the nucleation algorithm dedicated to constant strain rate simula-
tions is then described. This more complex approach was applied to dislocation nucleation
in MgO NPs for which an activation energy database was derived from a multi-step NEB
method at the atomic [AMO 21a]. This time, a competition between the simulation real
time and the nucleation time obtained from TST equations influence the nucleation stress
and rate. The particularity of this per-site approach (in comparison to the simplified
model) is to be able to account for local stress variations, in the vicinity of the surface.
It allows for a better selection of the nucleation site and automatically include/exclude
a site from where a dislocation has previously nucleated. After a dislocation nucleation
event, the simulation shows a temporary stress reduction near the nucleation site (includ-
ing several neighboring sites) automatically cancelling the whole domain until the local
stress reincreases. The model was applied to MgO NCs under compression, using similar
parameters than those used by Issa et al. [ISS 15] for MD simulations. Finally, the ex-
tended model is used to investigate the effect of temperature, strain rate and sample size.
Assuming the simplifications made in our approach, results obtained using El-Numodis
are pretty close to those inferred from atomistic simulations.
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Chapter 5: to remember
• Two dislocation nucleation algorithms were integrated to El-Numodis based on the

transition state theory and kinetic Monte-Carlo approaches. It relies on activation
energy selection criteria.

• A simplified model is here applied to copper nanocubes while an extended version
of the algorithm is applied to MgO ceramic nanocubes.

• At low temperature, corners dislocation nucleation prevail.
• At high temperature, corners and center dislocation nucleation event are observed.
• Higher temperatures promote more nucleation events in a shorter time.
• The use of activation energy nudged elastic band databases within a transition state

theory framework allows to reproduce the results inferred from molecular dynamics
nanocompression tests in the case of MgO nanocubes using El-Numodis.

• Atomistically-informed El-Numodis is a reliable way to study the effect of sample
size, strain rate and temperature on the mechanical properties of nanoparticles.

• Simulations varying strain rate and sample size at room temperature allow to parse
conditions where the deformation of MgO nanocubes is nucleation-controlled.

• Increasing the strain rate increases the yield stress while increasing the temperature
reduces it.

• Nucleation is more sensitive to temperature, especially at lower strain rate.
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Conclusion and perspectives

The present PhD manuscript relies on the development of a multi-scale simulation tool
called El-Numodis based on the superposition method to investigate the mechanical prop-
erties of nano- and micro-crystals. El-Numodis, allows for simulations on a wide time and
size scales using discrete dislocation dynamics coupled to finite-element method, possi-
bly informed by lower-scale simulations. The code can handle various situations where
surfaces can influence the mechanical response, starting from a predefined dislocation mi-
crostructure or nucleating new defects from the surfaces or from the bulk. El-Numodis was
conceived in a simple way taking advantages of the object-oriented programming roots of
Numodis. As a result, El-Numodis will be easily upgradeable in the future by any person
with discrete knowledge in programming. In the following, the main outcomes of my PhD
thesis are recalled and discussed.

Initially, the main purpose of El-Numodis was to build a multi-scale simulation frame-
work accounting for surfaces forces in mechanical simulations. To evaluate the correct
implementation of the software, the exact theoretical solution of basic problems involving
image stress calculations were compared to El-Numodis outcomes. Before any comparison,
the first step consisted in verifying that the discrete dislocation dynamics functions cor-
rectly reproduced dislocation stress fields. Stress distributions for infinite edge and screw
dislocations as computed by El-Numodis were successfully compared to the analytical out-
comes of the non singular theory of Cai [CAI 06]. Following the theoretical steps found in
the book of Hirth and Lothe [HIR 82], we have verified the role of the Airy function on
stress-free boundary conditions investigating precision and mesh quality. We have shown
that a refined mesh in stress-concentrated regions was able to generate better results than
using a regular fine mesh everywhere. El-Numodis was also tested successfully against
the square loop dislocation case and the Gosling and Willis theory [GOS 94, FIV 96]. All
this cases have shown the crucial role played by mesh refinement. Also, the pseudo-mirror
image dislocation construction introduced by Weygand et al. [WEY 02] was implemented
in El-Numodis (and Numodis standalone) and tested in this work. We confirmed that
solving BVPs using the pseudo-mirror dislocation method and the superposition method
together allows to use coarser finite-element mesh. Normally, the use of coarser meshes
in finite-elements simulations allows to save computational processing time at the cost of
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precision sacrifices. However, the combination of both finite-elements and pseudo-mirror
dislocations method allows to maintain a considerable precision with an acceptable mesh
quality in El-Numodis. Using face-centered cubic thin film as a playground, we have stud-
ied the effect of surfaces and the stress corrections carried by the superposition method,
the pseudo-mirror construction and the combination of both methods together. On thicker
films, we have shown than the finite element method with or without the mirror-image
construction, reduces stress value at the yield point when compared to pure discrete dis-
location dynamics simulation, however, without significant differences on the flow stress
emphasizing the weak influence of surfaces in larger size samples. Nevertheless, surface
effects were increased when considering a thinner sample and a direct comparison between
Numodis and El-Numodis outcomes ended up in an increase of the yield stress differences
and in a net change regarding the flow stress. Finally, we have seen that the cutoff used
in the pseudo-mirror dislocation method might have an impact on simulations results and
further investigations would be required to better understand the role of the cutoff and
properly set it.

The last part of the thesis was dedicated to the implementation of a dislocation nu-
cleation algorithm and its application MgO ceramic nanoparticles. Indeed, two versions
referred as simplified and extended respectively were implemented in El-Numodis. Both
are based on the transition state theory and kinetic Monte-Carlo including dislocation nu-
cleation energy barrier at various nucleation sites as inputs. The simplified version allows
for constant stress simulations while the extended one was later used in imposed strain
rate simulations. The simplified algorithm allowed to test the correct implementation of
new objects such as half and quarter dislocation loops heterogeneous dislocation nucleation
processes in El-Numodis. At the same time, it has provided significant piece of informa-
tion on understanding the effect of temperature, how to tune the nucleation probability
at each site as well as on the relation between the number of nucleation attempts and the
simulation timestep. The extended version of the nucleation algorithm allows to describe
surface dislocation nucleation in a framework where the local stress can vary. It was ap-
plied here to surface dislocation nucleation in MgO nanoparticles under compression, a
topic for which site-dependent surface dislocation nucleation energy barriers are available
from the literature [AMO 21a]. The atomistically-informed nucleation algorithm was de-
veloped accounting for activation energy maps and nucleation radii. Imposed strain rate
simulations for various size of MgO nanocubes were performed and we have first performed
a comparison between El-Numodis and molecular dynamics published data. The simula-
tions showed the prevalence of corner nucleation over surface nucleation, as reported in
the seminal work of Issa et al. [ISS 15]. The nucleation stress computed using El-Numodis
at ε = 11 % were found to be in particularly good agreement with molecular dynamics
outcomes of Issa et al. Some differences were found regarding to post-nucleation stress
drops as well as the triggered stress of the subsequent nucleation events. The second relies
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Conclusion and perspectives

on the limits of the nucleation model used. Indeed, El-Numodis does not integrate the
formation of surface step when a dislocation nucleate (or escape) from the sample surface.
Thus, simulations involving dislocation nucleation and starvation cycles are expected to
happen at the same triggered stress. Also, the different stress drop amplitude between
superposition method and molecular dynamics is believed to be attributed to the differ-
ence in terms of dislocation mobility law. Also El-Numodis is for now constant-shape
(small-deformation principle) what could influence the mechanics at larger strains. All
are development paths for the coming years.
The final goal of the PhD was originally to be able to test nanoparticles in the laboratory
conditions of deformation i.e., at lower strain rate than in molecular dynamics and for at
least 100-nm sized nanoparticles. In particular, we wanted to verify the possible transi-
tion from a pure nucleation/exhaustion regime to a bulk-like multiplication deformation
regime i.e., answering the question “At what time and size scales does a dislocation mi-
crostructure stabilizes within a nanoparticle?”. This was only partially fulfilled and we
have been able to investigate the effects of strain rate, temperature and nanoparticles size
only on the yield stress of MgO nanoparticles (and not to investigate larger-strain prop-
erties) and not on dislocation dynamics properties at larger strains. Indeed, we identified
a yield stress reduction of only 12 % when the imposed strain rate was reduced from 109

(molecular dynamics conditions) to 10−2 s−1 (experimental conditions of deformation), in
agreement with the transition state theory. This is particularly limited, especially when
compared to metals that can reach yield stress decrease more than 50 % lowering the
strain rate [ZHU 08]. This result confirm the particular high-strength of ceramic under
compression and the fact that molecular dynamics is particularly suited to investigate the
mechanical properties of ceramic nanocrystals. On the other hand, the yield strength was
found to be more sensitive to temperature (in comparison to strain rate) what could have
significant implications when sintering ceramics at intermediate and high temperatures.
Finally, three different values of strain rates were used on simulations with sample size
ranging from 25 to 250 nm. Overall, increasing the sample size increases the number of
dislocation that nucleate when the sample yields and this effect compete with strain rate
i.e., the larger the strain rate the larger the number of defects that nucleate. Pushing the
limits of El-Numodis, we have identified conditions (in terms of size and strain rate) where
surface dislocation nucleation saturates the number of available sites at the surface of the
sample leading to peculiar behaviors. In this regime, one can imagine that dislocations
will later be able to form dislocation microstructure, as observed in the work of Issa et
al. for comparable critical sizes [ISS 21]. However, further investigations are required to
finally conclude about this major question.

Perspectives
My PhD thesis lets some directions to be explored regarding hybrid dislocation dynamics/finite-

element simulations. Some of them are related to specific topics such as the use of the
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Conclusion and perspectives

transition state theory when relying on the surface dislocation nucleation process or the
study of small-scale deformation. In the following, perspectives are exposed starting from
basics associated to computational performances.
First, while Elmer and Numodis are both parallel, El-Numodis was conceived as a non
parallel method. Indeed, when starting the development of El-Numodis, Numodis was
still single processor software and I had at that time no skills on parallel coding. Thus, I
recommend to parallelize the data interchange between the both codes (even if it is not
the most expensive part of the coupling). Also, El-Numodis is currently using hexahedron
elements to mesh the samples. For simulation cells with non regular shapes, I recommend
to quickly introduce more versatile mesh elements such as 20 or 28 nodes hexahedron, or
10 nodes tetrahedron that are commonly used in finite-element simulations. This would
require to adapt stress to force and interpolation algorithms as described in sections 3.2.3
and 3.2.4. Also, a possibility to remesh simulation volumes on-the-fly would be a real plus.
Still in terms of computational costs, El-Numodis could be optimized by performing the
assembly process only once at the beginning of the simulation or periodically during the
simulation process. This would largely contribute to the decrease of the computational
costs.
Concerning simulation of small-scale objects using superposition method, modeling de-
formation using displacement controlled boundary conditions has not been studied while
theory elements are provided in Chapter 3. Further tests on displacement fields are needed
to ensure right calculations of the dislocation displacement fields, before validating im-
posed strain rates simulations using displacement controlled boundary conditions. Also,
the pseudo-mirror dislocation method needs to be further investigated to better under-
stand the effect of the cutoff distance on the influence of surfaces on dislocations. Indeed,
investigations ran here on thin films revealed that an incorrect cutoff distance selection
can affect simulation outcomes such as the yield stress.

The influence of temperature on the surface dislocation nucleation process needs to
be evaluated in larger samples. During this work, only the smaller samples were used
to investigate temperature effects and it does not allow for the full investigation of the
process. Moreover, the surface dislocation nucleation database might be interpolated
and the number of nucleation sites increased when enlarging the sample size in order
to more rigorously account for potential size-effect. Finally, the investigation of the size
dependence should be continued in order to emphasize the transition between a pure
nucleation/exhaustion regime in nano-objects and the bulk-like multiplication regime in
larger samples.
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