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de Cottrell (Fe-0.85at% C). . . . . . . . . . . . . . . . . . . . . . 145

v



List of Figures

1 Typical stress-strain curve for Fe-C systems and the variation in

the yield stress at different temperatures (figure adapted from

Ref. [De 2000]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 TEP variation of a cold worked ULC steel (50% of reduction) aged

at different temperatures. Figure taken from Ref. [Lavaire 2001]. 3

3 3D carbon atom map (left) and the corresponding 1.3 at%C isocon-

centration surfaces (right) in a martensite specimen obtained from

atom probe tomography data. The morphology and the concentra-

tion profile of the interconnected carbon-enriched regions indicate

that the carbon atoms are trapped in Cottrell atmospheres in dis-

location tangles in the martensite matrix. Figure adapted from

Ref. [Sherman 2007]. . . . . . . . . . . . . . . . . . . . . . . . . . 4
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sibles de l‘atome de carbone autour d‘une dislocation vis (au cen-
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représentent les résultats des marches aléatoires simples. . . . . . 139
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General introduction

The static strain aging (SSA) concept refers to the hardening of a material that

has undergone plastic deformation and then is aged for a certain period of time.

As represented in Fig. 1, the most evident manifestation of SSA is the increase in

the yield stress. In the late 1940s, Cottrell and Bilby proposed a theory to explain

SSA in ferritic steels [Cottrell 1949]. In a few words, this theory states that,

during the rest time, the dislocations introduced by plastic deformation interact

with the interstitial carbon atoms in solid solution in the iron matrix through

their respective stress fields; carbon segregation to dislocations is the consequence

of this interaction. As more carbon atoms segregate, an “atmosphere” grows

around the dislocations. This carbon Cottrell atmosphere hinders the dislocation

motion upon reloading, such that a higher stress is required in order to make the

dislocation tear away from the solutes. It is commonly accepted that the Cottrell

atmosphere formation is the first stage of static strain aging. The second stage

is the precipitation of carbides in the dislocation vicinity. However, if carbon

concentration is low, only the first stage is expected to occur.

Apart from the increase in the yield stress after straining and other mechani-

cal properties related to the dislocation anchoring (e.g., the fatigue strength, the

ductile-to-brittle transition, the ultimate tensile strength, and so forth), other

aging effects also arise from the removal of solutes from the iron matrix. For

example, the thermoelectric power (TEP) measurement is known to be very sen-

sitive to the specimen microstructure in general and the carbon content in solution

in particular. As such, it provides a convenient way of quantifying the amount

of carbon content still in solution after a prescribed aging time. Fig. 2 presents

the TEP variation of a ULC steel at different aging times and temperatures

[Lavaire 2001].

Recent advances in the experimental techniques, particularly the field ion

microscopy and the atom probe tomography [Kelly 2007], made possible to im-

age Cottrell atmospheres, which are no longer mere conjectures. L. Chang,
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Figure 1: Typical stress-strain curve for Fe-C systems and the variation in the
yield stress at different temperatures (figure adapted from Ref. [De 2000]).
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Figure 2: TEP variation of a cold worked ULC steel (50% of reduction) aged at
different temperatures. Figure taken from Ref. [Lavaire 2001].

in his doctoral thesis [Chang 1985], provided the first experimental evidence

of carbon Cottrell atmospheres in low carbon lath martensites by superimpos-

ing field ion micrographs and gated carbon images taken in the imaging atom

probe. Many other experimental works have been published since then where

atom probe techniques were used to visualize impurity segregation at line defects

[Wilde 2000, Miller 2003, Sherman 2007]. For the sake of example, Fig. 3 shows

a 3D carbon atom map in a martensite specimen. The morphology and the con-

centration profile of the interconnected carbon-enriched regions indicate that the

carbon atoms are trapped in Cottrell atmospheres in dislocation tangles in the

martensite matrix [Sherman 2007].

From a technological point of view, the dislocation pinning by solutes results in

deleterious plastic instabilities that can represent a serious hindrance to the steel-

based manufacture and applications. The two types of instabilities associated

with strain aging are the Lüders bands (non-uniform yielding) and the Portevin-

LeChatelier (PLC) effect [Graff 2004]. The Lüders bands are localized bands of

plastic deformation that propagate in the material as a consequence of SSA. As it

can be clearly discerned in Fig. 4, the Lüders bands delineate plastically deformed

and undeformed zones in the analyzed specimen upon the application of tensile

stress. The PLC effect, in turn, is characterized by a serrated stress-strain curve

due to the pinning/unpinning of dislocations and is related to another strain aging

phenomenon, called dynamic strain aging (DSA). In contrast with SSA, which
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Figure 3: 3D carbon atom map (left) and the corresponding 1.3 at%C isocon-
centration surfaces (right) in a martensite specimen obtained from atom probe
tomography data. The morphology and the concentration profile of the inter-
connected carbon-enriched regions indicate that the carbon atoms are trapped
in Cottrell atmospheres in dislocation tangles in the martensite matrix. Figure
adapted from Ref. [Sherman 2007].

takes place during the specimen rest time, DSA manifests during the specimen

deformation. It is currently associated with the diffusion of impurities to a mobile

dislocation temporarily arrested at obstacles such as a dislocation forest. Strain

localization related to the PLC effect is usually seen as a sequence of shear bands,

as one can see in Fig. 5.

Given its technological importance, it is natural that strain aging has been

attracting so much attention for decades. From a theoretical point of view, some

simple analytical models, based mostly on classical elasticity theory, were pro-

posed and helped to explain many aspects of strain aging, despite the limitations

inherent to mesoscopic approaches applied to an atomistic problem. In recent

years, owing to the fact that computer power enormously increased, computer

simulations with methods that fully take into account the atomistic details (e.g.,

molecular dynamics) became possible.

The work presented in this thesis can be seen as part of a larger effort to

apply atomistic simulations to the investigation of the properties of Fe-C systems

under stress conditions. The milestones of this long term project are outlined in

the following:

1) development of interatomic potentials to be used with atomistic simulations

(e.g., the Fe-C interatomic potential presented in Ref. [Becquart 2007]);
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Figure 4: The Lüders behavior in a simulated (finite elements) and an experi-
mental smooth U-notched specimen. The plastic strain maps are shown at dif-
ferent overall displacement levels (0.2, 0.5, 1.2, 1.8 mm). Figure taken from
Ref. [Graff 2004].

Figure 5: The PLC effect in a simulated (finite elements) and an experimen-
tal smooth U-notched specimen. The plastic strain rate maps are shown at
different overall displacement levels (0.3, 0.5, 0.7, 1 mm). Figure taken from
Ref. [Graff 2004].
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2) carbon diffusion in bcc iron under the application of homogeneous stress (e.g.,

modeling the carbon Snoek peak [Garruchet 2008]);

3) carbon diffusion in the non-homogeneous stress field created by dislocations,

leading to the Cottrell atmosphere formation (first stage of static strain aging);

4) further stages of static strain aging, when carbide precipitation takes place in

the dislocation vicinity;

5) dislocation unpinning and glide under the application of an external stress.

This thesis partially addressed point 3 above. It should be mentioned that,

such as many problems in materials science, modeling SSA is inherently a mul-

tiscale problem (see Fig. 6). This kind of problem, which spans multiple spatial

and temporal scales, is very challenging, both theoretically and experimentally.

On one hand, it is out of reach to treat all involved scales in the framework of

a single physical model. On the other hand, even if it is possible and necessary,

it is not trivial to link the results and conclusions of experiments or models ob-

tained at different scales. For the time being, the scope of the present project

is restricted to the atomic (nanometer) scale, where the behavior of individual

atoms are explicitly taken into account.

Although the underlying (atomic scale) mechanism of SSA is well-established

in general terms (i.e., carbon and other impurities migrate and pin dislocations),

many aspects of this important phenomenon still have to be tackled. For ex-

ample, in the theoretical corner, there are very few studies that actually model

the effect of the dislocation stress field on carbon diffusion at the atomic scale.

Indeed, most of the works on the subject refer to the application of simple ki-

netic models or, at the best, extract their conclusions from static calculations

of carbon-dislocation binding energies. A key point in the multiscale materials

modeling is the choice of the simulation tool which is the most appropriate for

the task to be accomplished. Because diffusion in the solid state is a thermal-

activated phenomenon that proceeds slowly (minutes or even hours) compared

to the typical time scale (a few nanoseconds) that can be achieved by molecular

dynamics, which is the standard method for computer simulations at the atomic

scale, alternatives have to be considered. One of the most promising is kinetic

Monte Carlo. With kinetic Monte Carlo, computer simulations can overcome

the nanosecond barrier and even achieve the experimental time scale (see Fig 6),

while describing accurately the diffusional processes. As such, it has been the

preferential method used throughout this PhD work.

The manuscript is organized as follows:
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Figure 6: Representation of multiscale materials modeling according to the dif-
ferent scales involved. Figure adapted from Ref. [Becquart 2010].

• Chapter 1 shortly introduces the computational methods that have been

used in this work, emphasizing atomistic kinetic Monte Carlo;

• Chapter 2 focuses on the effect of the long range stress field created by an

edge and a screw dislocation on carbon diffusion, using molecular statics to

obtain carbon-dislocation binding energies and energy barriers for carbon

migration, as well as atomistic kinetic Monte Carlo to simulate a carbon

atom diffusing in the neighborhood of the line defect;

• Chapter 3 presents the comparison of carbon-dislocation binding energies

and energy barriers for carbon migration obtained by molecular statics in

Chapter 2 with results of anisotropic elasticity theory applied to the inter-

action between the point and the line defect;

• Chapter 4 consists of a still preliminary investigation of carbon behavior in

the core of an edge or a screw dislocation (i.e., pipe diffusion);

• Chapter 5 reports the results of a statistical physics model that employs

the carbon-dislocation binding energies presented in Chapter 2 to predict

carbon distribution in the stress field of dislocations;
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• Appendix A briefly describes the interatomic potential used in the atomistic

simulations, including a modification done in the Fe-C pairwise function in

the course of this PhD work.
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Chapter 1

Methods

Abstract

Here we present an overview of the computational methods employed in the

investigations reported in the subsequent chapters. Molecular statics provides

the total potential energy of an atomistic system in the vicinity of a local energy

minimum (i.e., a system configuration at T = 0 K). The temporal evolution of an

atomistic system at T > 0 K, in turn, can be simulated by molecular dynamics

or atomistic kinetic Monte Carlo, either method presenting specific strengths and

weaknesses. Atomistic kinetic Monte Carlo requires that the energy barriers for

the transitions that the system can undergo are known, thus some methods used

to find saddle points are briefly introduced.
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Methods

1.1 Molecular statics

Molecular statics comprises a wide family of algorithms that, applied to atomistic

systems, allows to optimize the structure of a collection of atoms in order to

reach a local energy minimum in the potential energy surface. In other words, it

refers to the specific problem of finding out a final configuration with coordinates

{"rN
f } for which the total interatomic force |"F N | = |

∑N
i=1

"Fi| → 0, where N is

the number of atoms, starting from a configuration with coordinates {"rN
s }. In

practical terms, {"rN
f } will be the first atomic configuration close to {"rN

s } for which

|"F N | ≤ ε, where ε is an arbitrarily small force tolerance (typical values ranging

from 10−2 to 10−4 eV/nm).

Although damped molecular dynamics algorithms are frequently used to op-

timize atomic structures, molecular statics is inherently different from molecular

dynamics because the former method does not produce physically meaningful

atomic trajectories. In fact, only the final configuration has a physical meaning,

namely, the ground state of the considered system (i.e., a system state at T = 0

K). Since temperature is not taken into account in molecular statics simulations,

the particle momenta {"pN} = 0.

In our work, we preferentially used the conjugate gradient (CG) algorithm

to perform geometry optimization. This is by far the most widely used algo-

rithm for this purpose. The method is shortly described in the following. CG is

implemented as a sort of iterative method for the solution of systems of linear

equations in the form Ax = b, where A is a square positive-definite matrix, b

is a known vector, and x is the vector to be determined. Concerning the prob-

lem of minimizing the energy of a collection of atoms, it means that, at each

CG iteration, for every atom in the system, the force "Fi acting on the i-th atom

located at "ri is calculated from the gradient of the system potential energy "∇iE,

and then this atom is displaced in the direction of energy decrease as well as

in the direction perpendicular to its previous displacement. CG normally allows

to reach a relaxed configuration (i.e., a local energy minimum in the potential

energy surface) within a certain tolerance ε in a relatively small number of itera-

tions (compared to the system size) by monotonically improving approximations

to the exact solution. To a comprehensive description of the conjugate gradient

method, the interested reader is referred to Ref. [Shewchuk 1994], which is prop-

erly entitled “An Introduction to the Conjugate Gradient Method Without the

Agonizing Pain”, or to Ref. [Saad 2003].

Throughout this work, we used the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) code [Plimpton 1995] to perform molecular statics
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(and also molecular dynamics) simulations. To date, LAMMPS is one of the most

efficient codes available for this purpose. It is fully parallelized, which makes it a

good choice for the simulation of moderate-to-large atomistic systems on multiple

processors.

1.2 Molecular dynamics

In computer simulations, molecular dynamics (MD) is the standard method used

to numerically simulate the evolution in time of an atomistic system by integrating

Newton’s equations of motion for all its particles. Time in MD simulations is

discretized and the time step ∆t is normally chosen so as to be as small as the

fastest atomic vibrations (≈ 10−15 s). In this short time interval, the forces acting

on the particles are assumed to be constant. Numerical integration is carried

out by using finite difference methods. Some efficient numerical integrators are

available; in this work, we used the Velocity Verlet algorithm [Swope 1982], based

on the original algorithm proposed by L. Verlet [Verlet 1967]. The position "ri

and the velocity "vi of the i-th particle at t + ∆t according to the Velocity Verlet

algorithm is given by the following equations:





"ri(t + ∆t) = "ri(t) + "vi(t)∆t +

"Fi(t)
2mi

∆t2

"vi(t + ∆t) = "vi(t) + 1
2mi

[
"Fi(t) + "Fi(t + ∆t)

]
∆t

(1.1)

where mi is the particle mass and the force "Fi acting on the particle at any instant

t is calculated as follows:

"Fi(t) = −"∇iE = −
(

∂E

∂xi
î +

∂E

∂yi
ĵ +

∂E

∂zi
k̂

)
(1.2)

The total potential energy E of the system at any instant of time is determined

from the relative positions of the particles, which interact with each other through

an interatomic potential, and is evaluated at each MD step. Solving Eq. (1.2)

for every particle in the system is the most computationally expensive task to be

carried out by the MD algorithm.

Most of the molecular dynamics codes available to the community of com-

putational materials scientists are complex software packages (e.g., LAMMPS,

NAMD, Amber, Gromacs). In spite of it, all MD programs share the same basic

logic. A minimalist outline of a typical MD program is presented in the following:

• A simulation protocol defines the general conditions under which the system
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will be simulated: initial temperature, initial pressure, target temperature,

target pressure, boundary conditions, number of MD steps, time step (∆t),

etc.

• System initialization: initial positions and velocities are assigned to the

particles, and all necessary information about the system, such as the in-

teratomic potential, is provided.

• The simulation itself is launched. MD is an iterative method, where each

iteration corresponds to a time step ∆t. At each iteration:

1) The total potential energy of the system as a function of particle po-

sitions is calculated.

2) The forces acting on all particles are computed (Eq. (1.2)).

3) The new positions and velocities of the particles are computed by

integrating the equations of motion with a suitable algorithm, such as

the aforementioned Velocity Verlet algorithm (Eq. (1.1)).

4) The total simulated time is incremented by ∆t.

5) Optionally, the quantities of interest (e.g., the positions and veloci-

ties of the particles) are stored into appropriate data files for post-

processing.

6) If the total number of MD steps is reached, the simulation stops; oth-

erwise, the next iteration starts.

The trajectories simulated by MD should be long enough to provide represen-

tative samples of the system configurations. The number of MD steps required

to perform meaningful statistical analysis depends on the simulated temperature

and also on the characteristics of the system under study. As a general rule,

molecular dynamics simulations of liquids and soft matter can be shorter and

performed at lower temperatures than simulations of solids, owing to the higher

mobility of the atoms in the former case.

Molecular dynamics, for the reasons explained in the next section, was not the

principal simulation method that we have employed so far. On the other hand,

in the sequence of this work, it is the natural choice for a number of perspective

simulations (e.g., unpinning of a dislocation arrested by a Cottrell atmosphere).

A detailed discussion on molecular dynamics can be found in Ref. [Frenkel 2002].
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1.3 Atomistic kinetic Monte Carlo

1.3.1 Motivation of the algorithm

The erratic walk of a carbon atom in a bcc iron matrix is an example of diffusion

in the solid state. This is one out of many important physical phenomena that

are ruled by rare events (i.e., discrete transitions that usually take a long time

to occur compared to the atomic vibrations). Transition state theory states that

most of the time the system will be found in the vicinity of a stable state, which

is a configuration that corresponds to a local energy minimum in the potential

energy surface [Marcelin 1915, Wigner 1932, Eyring 1935]. A transition occurs

when the system performs a jump to another stable state, adjacent to the current

one, surpassing the energy barrier that separates the two states in a sudden move.

As such, the long time evolution of this system can be described in terms of a

chain of discrete transitions.

In principle, MD simulations can be used to simulate this kind of system, too.

In fact, there is no technical issue that prevents this. However, in practice, a well-

known drawback of molecular dynamics is that the time step ∆t in Eq. (1.1) has

to be very small (in the order of 10−15 s). As a consequence, in MD simulations,

much of the computational effort is done to simulate the atoms vibrating around

their equilibrium positions and such vibrations give no contribution to particle

diffusion. Furthermore, the small ∆t imposes a drastic limit on the time scale that

can be achieved by MD simulations (typically, a few nanoseconds) in a reasonable

CPU time, even in large parallel machines, while a transition, depending on the

simulated temperature, may take a long time to occur.

On the other hand, kinetic Monte Carlo (KMC) [Voter 2002, Fichthorn 1991]

is specially suitable to study this kind of state-to-state dynamics. It belongs

to the Monte Carlo family of algorithms that use random numbers to solve a

broad range of numerical problems. Since KMC makes the system evolve dynam-

ically, it is in sharp contrast with other Monte Carlo algorithms, like Metropolis

[Metropolis 1953, Frenkel 2002], which are time-independent and are used to find

configurational free energy minima only. In contrast with MD, the time step in

KMC is not fixed but stochastically determined at each iteration. Moreover, ev-

ery KMC iteration is associated with a system transition; the atomic vibrations

around an energy minimum between two transitions are neglected. The KMC

approach allows to reach typical experimental time scales (hours, days, in some

cases, even years, depending on the system under study).
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1.3.2 The AKMC algorithm

Among the available KMC algorithms, atomistic kinetic Monte Carlo (AKMC)

is one of the simplest [Becquart 2009]. In typical AKMC, the geometry of a rigid

lattice is derived from the actual geometry of the atomistic system to be studied.

This is to say that, bearing in mind the problem of an interstitial atom (carbon)

diffusing in a crystal (bcc iron), every point on the AKMC lattice corresponds

to a site in the crystal that is available to be occupied by the interstitial atom.

Furthermore, all possible transitions that this kind of system can undergo, as well

as their corresponding probabilities, can be obtained just once and then tabulated

into a reusable event catalog, which enormously speeds up AKMC simulations.

Concerning the present model, we have implemented an AKMC code based on the

residence time algorithm derived by Young and Elcock for the study of vacancy

migration in ordered alloys [Young 1966].

A brief description of the AKMC algorithm used in this work (Algorithm 1.1)

is given next. The central quantity in AKMC, calculated at each iteration, is

the residence time τ , which determines how long the system remains in a given

state before jumping to one of the adjacent states. In order to calculate it, all

transition rates to escape such a state must be known. The transition rate Ri→j,

where i is the current state and j is one of the adjacent states, is obtained by:

Ri→j = w0 exp

(−Em
i→j

kT

)
(1.3)

where w0 is the attempt frequency (usually in the order of 1013 Hz), k is the

Boltzmann constant, T is the simulated temperature, and Em
i→j is the energy

barrier (at T = 0 K) to be surpassed in order to the system escapes the current

state i to the adjacent state j (see Fig. 1.1). According to harmonic transition

state theory [Vineyard 1957], the energy barrier for the transition i → j is given

by the following simple equation:

Em
i→j = Esp − Emin

i (1.4)

where Esp is the total energy of the system at the saddle point (i.e., the transition

state) and Emin
i is the total energy of the system at the state i. Hence, the

residence time τ is computed as:

τ = − ln r1

Ωi
(1.5)
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Figure 1.1: Illustration of a transition taking the system from state i to j (direc-
tion of the red arrow) by overcoming the energy barrier Em.

Figure 1.2: The K-th transition is chosen because its assigned value of s(k)
intercepts r2 · Ωi.

Note that τ , in Eq. (1.5), depends on all transition rates, not only on the rate

to escape to state j: Ωi =
∑Z

k=1 Ri→k is the sum of the rates of all possible Z

transitions that the system can undergo from the current state i; r1 is a random

number in the range of (0, 1].

As soon as τ has been calculated, it is added to the total time elapsed until

then, and a transition is selected to make the system advance to the next state.

This is done by applying the method introduced by Bortz, Kalos, and Lebowitz

in Ref. [Bortz 1975]. A quantity s(k) =
∑K

k=1 Ri→k is defined and its value is

assigned to the K-th transition, with K ≤ Z (Z is the total number of transitions

that are allowed from the current state i). Then, a random number r2 in the range

of [0, 1] is generated and the transition corresponding to the smallest s(k) that is

greater than r2 · Ωi will be chosen (see Fig. 1.2). At this point, a single AKMC

iteration is finished. The program will proceed until the maximum number of

AKMC steps (or any other stopping condition) is reached.

In order to provide an estimate of the efficiency of Algorithm 1.1, the simu-

lation of a trajectory consisting of 1,000 steps lasts less than one second running
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on a single processor (Intel Core 2 Duo, 2.4 GHz).

Algorithm 1.1 The AKMC algorithm used in this work.
1: Load the catalog containing the allowed transitions and the corresponding

rates;
2: Parameter: maximum number of trajectories Ntraj to be generated;
3: Parameter: maximum number of steps (iterations) per trajectory Nsteps;
4: a = 1;
5: while a ≤ Ntraj do
6: t = 0;
7: Select an initial state;
8: b = 1;
9: while b ≤ Nsteps do

10: if Stopping condition is not achieved then
11: Compute Ωi;
12: Generate a random number r1;
13: Compute τ ;
14: t = t + τ ;
15: Generate a random number r2;
16: s(:) = 0;
17: for all States k adjacent to the current state i do
18: Compute s(k);
19: if s(k) ≥ r2 · Ωi then
20: Pick the K-th state as the new current state;
21: Exit the loop;
22: end if
23: end for
24: b = b + 1;
25: end if
26: end while
27: a = a + 1;
28: end while

1.4 Saddle point finding methods

1.4.1 The saddle point problem

The energy barriers calculated by Eq. (1.4) are entry parameters of the AKMC

code, thus they have to be obtained by other means. It is straightforward to ob-

tain the total energy of local energy minima with molecular statics simulations.

On the other hand, even if saddle points also are critical points, they are neither

minima nor maxima in the potential energy surface. A saddle point corresponds

to a point for which the Hessian matrix (the second derivative of the potential
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Figure 1.3: The drag method: the system is moved from the initial state (IS)
to the final state (FS) by small steps and relaxed in the (hyper)plane perpen-
dicular to the IS-FS direction. The transition state (TS) is taken as the point
with the highest energy along the minimum energy path. Figure taken from
http://www.fhi-berlin.mpg.de.

energy E with respect to the positions of the particles) is indefinite. In princi-

ple, it means that saddle points could be calculated from the Hessian matrix. In

practice, this is computationally too expensive to be accomplished, then approxi-

mative methods have been proposed. An authoritative review by Henkelman and

co-workers on some of the main methods currently used to find saddle points can

be found in Ref [Henkelman 2000a]. A brief description of the methods employed

in this work follows.

1.4.2 The drag method

It is the simplest method to search for saddle points. The drag method requires

the knowledge of two states that are energy minima of the system in the potential

energy surface. Starting from the initial state, small fixed length displacements

(steps) are applied to the system towards the final state (see Fig. 1.3). At each

step, the system is allowed to relax only in the hyperplane perpendicular to the

drag line (i.e., the line connecting the initial and the final state). The direction

followed by the system stepwise is often called the reaction coordinate. As soon as

the minimum energy path between the two energy minima is revealed, the position

with the highest energy along this path will be taken as the best estimate for the

saddle point.

The accuracy of the drag method is inversely proportional to the step length.
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If the step length is too large, the saddle point is likely to be missed by far. At

the beginning of our work, a modification of the drag method was implemented

where the step size was no longer fixed. The first step that makes the system

leave an energy minimum can be very large (1/3 of the minimum-to-minimum

distance, for instance), and the subsequent ones should be smaller (we used 1/10

of that distance as a first guess). At each step, "F · R̂ is calculated, where "F is

the force vector and R̂ is the unit vector that points from the starting energy

minimum to the destination one (i.e., it defines the reaction coordinate). If the

scalar product is less than zero, the force is trying to bring the system back to

the initial energy minimum and then it has to be dragged in the direction of R̂

in order to climb up the potential energy surface. On the contrary, if the the

scalar product is greater than zero, then the system surpassed the saddle point

and is trying to reach the other energy minimum. Then the system is brought

back to the previous step, a new step size is defined as half the current one, and

the system is moved again towards the second energy minimum. This procedure

is iteratively applied until the step size is within an arbitrarily small tolerance

or, much less likely, the scalar product "F · R̂ becomes zero (that is, the system is

exactly at the saddle point). It is not possible to draw a minimum energy path

with this method but, on the other hand, this modification is more efficient and

accurate to find a saddle point than the original drag method implementation.

In spite of its easy implementation, it should be pointed out that the drag

method is not reliable in all situations and, in fact, it completely fails in many.

Since a more sophisticated and reliable method (the nudged elastic band method,

see below) became available in LAMMPS, the drag method will be no longer used

in the context of the current project.

1.4.3 The nudged elastic band method

The nudged elastic band (NEB) method became, in recent years, the state-of-the-

art method to draw a minimum energy path between two known energy minima

and estimate the saddle point [Henkelman 2000a]. In the NEB method, a set of

replicas (“images”) of the system is created along the path connecting the two

energy minima (see Fig. 1.4). Those replicas form a chain where consecutive

replicas are connected by fictitious springs (i.e., the elastic band), which prevent

that the chain collapses on the energy minima. The actual minimum energy

path is revealed when the total energy of the string of replicas is minimized by a

suitable algorithm.

A modified version of the NEB method is the Climbing Image Nudged Elastic
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Figure 1.4: The NEB method: representation of a chain of images in the potential
energy surface. Each image is a snapshot of the system at that position along
the minimum energy path that connects two energy minima (green spheres). The
blue sphere is the image with the highest energy and therefore it is supposed to
be the image that is closest to the saddle point.

Band (CI-NEB) method. After minimizing the energy of all images taken to-

gether, the highest energy image is disconnected from its neighbors and is driven

up to the saddle point by maximizing its energy along the direction defined by

the band. CI-NEB has the obvious advantage that it provides not only the saddle

point, but also a global view of the minimum energy path between two energy

minima. It allows to identify, for instance, whether more than one saddle point

is found along the minimum energy path.

1.4.4 The activation-relaxation technique

In contrast with “chain-of-states” methods (like drag and NEB), the activation-

relaxation technique (ART) [Barkema 1996] is an example of method to search

for saddle points when only one energy minimum is known. The method can be

split into two steps:

1) Activation: one of the atoms of the system is slightly displaced in order to

create a non-zero force in the system. Then the whole system is enforced to

go up hill in the potential energy surface up to arrive to a saddle point;

2) Relaxation: once at the saddle point, the system is relaxed towards a new

energy minimum in the potential energy surface, thus completing a transition

(event).

While the relaxation step can be achieved by any of the well known methods

for minimizing the energy of a system, the activation step is more challenging to

be implemented. ART, in the original formulation by Barkema and Mousseau,
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accomplishes it by introducing a modified force, defined as follows:

"G = "F − (1 + α)("F · R̂)R̂ (1.6)

where "F is the force derived from the interatomic potential energy, R̂ is the unit

vector pointing from the energy minimum to the current position, and α is a

positive number. Thus the new force "G is opposite to "F in the direction parallel

to R̂ and equal to "F in all other directions. At the saddle point, | "G| = |"F | = 0

and the activation step stops. Some improvements have been introduced by other

authors in the ART method, as one can see, for instance, in the work by Cancés

et al [Cancès 2009].

In the context of this PhD work, we have implemented a simplified version of

the ART method, namely, the translation-and-relaxation (TaR) method. It starts

by randomly displacing a single atom (in our case, the carbon atom) from the

position that corresponds to the energy minimum. Then constrained molecular

statics is carried out where the carbon atom is allowed to relax only on the plane

perpendicular to R̂C , which is the unit vector pointing to the current carbon

position from its initial position. After geometry optimization, R̂C is updated

with the new carbon position and a small displacement of the carbon atom is

performed in the direction pointed out by R̂C . Constrained molecular statics is

performed again. This process, which clearly corresponds to the activation step in

the original ART method, will be repeated while the scalar product "FC · R̂C < 0,

where "FC is the force acting on the carbon atom evaluated before each translation.

When "FC · R̂C > 0, the carbon atom crossed the position corresponding to the

saddle point and the geometry of the system is fully relaxed so as to allow the

carbon atom moves towards an adjacent energy minimum. This can be seen as

the relaxation step in the original ART method.

Although the TaR method could be used to provide an estimate of the saddle

point, it has been used in this work to find the unknown energy minima positions

around an initial energy minimum (i.e., it has been used to build a network of

energy minima as seen in Fig. 1.5), while the saddle points have been obtained

with CI-NEB.
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Figure 1.5: The TaR method: a network of local energy minima (big blue circles)
connected by saddle points (small red circles) can be built starting from only one
energy minimum by performing many activation (dashed arrows) and subsequent
relaxation (solid lines) steps.
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Chapter 2

Effect of the stress field of

dislocations on carbon diffusion

Abstract

Carbon diffusion near the core of an edge and a screw dislocation in α-iron has

been investigated by means of an atomistic model that brings together molecular

statics and atomistic kinetic Monte Carlo. Molecular statics simulations with

a recently developed EAM potential have been carried out in order to obtain

atomic configurations, carbon-dislocation binding energies, and the activation

energies required for carbon hops in the neighborhood of the line defect. Using

information gathered from molecular statics, on-lattice AKMC simulations have

been performed for temperatures ranging from 300 K to 600 K, so as to study the

behavior of a carbon atom as it interacts with the dislocation stress field before

being trapped by the line defect.
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2.1 Introduction

Much effort has been done to model the strain aging behavior of steels and other

metallic alloys since Cottrell and Bilby proposed a first kinetic model to describe

the initial stage of SSA [Cottrell 1949], which is the Cottrell atmosphere forma-

tion. In their model, the total number Ns of segregated carbon atoms per unit

length of dislocation in time t is given by:

Ns = N03
(π

2

) 1
3

(
ADt

kT

) 2
3

(2.1)

where N0 is the number of atoms in solid solution per unit of volume, D is the

diffusion coefficient of the segregating atom, A is a parameter that determines

the intensity of carbon-dislocation interaction1, k is the Boltzmann constant and

T is temperature. It should be pointed out that Cottrell and Bilby’s model

does not take into consideration carbon depletion in the matrix, thus it fails to

describe the kinetics as aging proceeds. Harper later modified the model in order

to consider the lowering of carbon concentration in the dislocation surroundings

[Harper 1951]:

Ns

N0
= 1 − exp

[

−3L
(π

2

) 1
3

(
ADt

kT

) 2
3

]

(2.2)

In Eq. (2.2), the rate of carbon atoms already segregated to dislocations increases

as carbon concentration in solid solution exponentially decays. As Harper’s model

neglects back diffusion to the matrix, it is expected to work only for low at-

mosphere densities. A “generalized” form of Harper’s equation that has been

preferred in recent studies is the JohnsonMehl-Avrami equation, which can be

written as:
Ns

N0
= 1 − exp [− (Kt)n] (2.3)

where the parameter K = K0 exp (−Em/kT ) allows to obtain the apparent acti-

vation energy of the aging process and n can assume values different from 2/3.

Indeed, deviations from 2/3 in the value of n are associated with a change in

the impurity diffusion mechanism [Leslie 1961, Bullough 1959, Buono 1998]. For

instance, if diffusion is restricted to the core of a dislocation (pipe diffusion),

n → 1/3, and if the absorbing particle is a precipitate (e.g., a growing cementite

particle), n → 1/2.

1In original Cottrell and Bilby’s formulation, the interaction energy of a carbon atom at a
location (r, θ), in polar coordinates, with respect to an edge dislocation is given by Einter =
A sin θ/r.
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In a further development from Harper’s and other’s works [Ham 1959,

Bullough 1959, Muba 1962], Hartley derived a model where the increase in yield

stress during aging is assumed to be due only to the reduction of mobile dislo-

cation length, which is in turn supposed to be proportional to the linear concen-

tration of solute atoms on the dislocations [Hartley 1966]. Hartley successfully

applied his model to the investigation of the effect of oxygen segregation to dis-

locations in the aging of unalloyed tantalum. The kinetics of strain aging from

the measurement of changes in yield stress according to Hartley’s model is given

by the following equation:

∆σ

∆σmax
= K1 + K2(at)n

= K1 + K2

(
Dt

T

)n

(2.4)

where ∆σ/∆σmax is the fractional increase in the yield stress during aging, t is

the aging time, K1 and K2 are constants that depend on the test conditions (the

meaning of which is not very clear in Hartley’s derivation), D is the diffusion

coefficient of the segregating atom, T is temperature, and n = 2/3 (in his original

work).

Despite the fact that Cottrell atmospheres remained a conjecture for decades,

the simple analytical models introduced above have been widely used in the in-

terpretation of aging experiments and proved to be consistent with the observed

kinetics, at least for small t. In recent years, three-dimensional atom probe

techniques allowed to go further and image interstitial impurities distributed

around dislocations in metallic alloys [Chang 1985, Blavette 1999, Cadel 1999,

Wilde 2000, Thompson 2007, Miller 2006], providing the missing direct exper-

imental evidence of Cottrell atmospheres. However, in spite of representing

a substantial advance in the experimental side, these techniques provide only

a static picture of the atmosphere. In other words, the impurity diffusion

to dislocations and the subsequent Cottrell atmosphere formation remains a

challenge for these techniques. In this context, numerical simulations, which

strongly benefited from the recent increase in computing power, may come

and fill the gap between microscopic and macroscopic experiments and mod-

els by offering an atomistic view of impurity diffusion near and to dislocations

[Ramasubramaniam 2008, Hin 2008, Veiga 2010].

This chapter presents computer simulations of carbon diffusion in the mod-

erately strained surroundings of an edge and a screw dislocation (the dislocation

core itself has not been considered except as a trap for carbon). Our model

24



Effect of the stress field of dislocations on carbon diffusion

Figure 2.1: A carbon atom (big white ball) in an octahedral or a tetrahedral site,
surrounded by iron atoms (small green balls).

consisted of coupling molecular statics and atomistic kinetic Monte Carlo simu-

lations, which allows to simulate thousands of trajectories with duration of up to

a few hours at temperatures close to the room temperature. The model and its

results are described in the next pages.

2.2 A note on the diffusion mechanism of car-

bon in bcc iron

Carbon is much lighter than iron and thus a carbon atom in solution in the iron

matrix will be generally found in interstitial positions. There are two in the α-Fe

lattice, which are depicted in Fig. 2.1. In the octahedral (O) site, a carbon atom is

in the center of the octahedron formed by six iron atoms that occupy the vertices.

The first nearest neighbors (two atoms) and the second nearest neighbors (four

atoms) are situated at a distance of 0.179 nm and 0.198 nm, respectively, from

the carbon atom2. In the tetrahedral (T) site, a carbon atom is surrounded by

four iron atoms at a distance of 0.179 nm.

The interpretation of experimental results [Porter 1981], later supported by ab

initio calculations [Jiang 2003, Domain 2004], states that the diffusion mechanism

of interstitial carbon in bcc iron consists of hops from/to octahedral sites passing

through tetrahedral sites. When sitting on an octahedral site, a carbon atom

is in the center of one of the faces of a bcc cubic cell. It can jump to one out

of four coplanar neighboring octahedral sites located in the edges of the cube.

2According to the interatomic potential presented in Ref. [Becquart 2007], after energy min-
imization.
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Figure 2.2: A schematic illustration of the positions of the three different octahe-
dral sites (variants) in the bcc unit cell (large open circles). The iron atoms are
represented by filled black circles. The dotted lines indicate the minimum energy
path for carbon migration.

These sites also correspond to the center of one of the faces of other cubic cells.

The basic assumption of the work reported in this chapter and also in Chapter 3

is that this simple diffusion mechanism still holds wherever the iron matrix is

moderately strained by the presence of a dislocation. Therefore, the first task

before performing simulations was to map all O- and T-sites around a dislocation.

For this purpose, we implemented a very simple algorithm taking into account

that far enough from the dislocation line, the lattice distortion is small and the

bcc symmetry is maintained, so that an octahedral position can be found in

the midpoint of every pair of neighboring iron atoms oriented along one of the

tetragonal distortion axes ([100], [010], or [001]). As it can be seen in Fig. 2.2,

the different orientations of those axes allow us to distinguish three octahedral

variants. A tetrahedral position, in turn, is always found in the midpoint of two

adjacent octahedral sites. For instance, a carbon atom occupying an [100] O-site

can jump either to a [010] or to a [001] O-site (there are two of each). In the first

case, the initial and the final O-sites are aligned in the [001] direction, therefore

the T-site between them is labeled a [001] T-variant. The same reasoning has been

applied to find [100] and [010] tetrahedral variants. Fig. 2.3 shows the T-sites in

the bcc unit cell.
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Figure 2.3: A schematic illustration of the positions of the three different tetra-
hedral sites (variants) in the bcc unit cell (small open circles). The iron atoms
are represented by filled black circles. The dotted lines indicate the minimum
energy path for carbon migration.

2.3 Energy calculations: molecular statics sim-

ulations

2.3.1 Setting up molecular statics simulations

Molecular statics simulations were performed by LAMMPS with a recently de-

veloped Fe-C potential [Becquart 2007] built according to the embedded atom

method (EAM), taking into account the modifications described in Appendix A.

The simulation boxes employed in this study are represented in Fig. 2.4 (top

view). They consisted of cylinders of radius 15 nm and height equal to approxi-

mately 4 nm with an edge or a screw dislocation in the center. The iron atoms

(about 200,000) have been arranged on a bcc lattice with a0 = 0.286 nm, where a0

is the equilibrium lattice parameter and its value is given by the EAM potential.

The dislocations have been introduced in the simulation boxes by displacing the

iron atoms according to the anisotropic elasticity theory of straight line defects

[Eshelby 1953, Stroh 1962, Stroh 1958]. Such a displacement corresponds to the

Volterra elastic field created by the dislocation. In both cases, the Burgers vector

is "b = a0/2[111] and the glide plane is a {101} plane that divides the simulation

boxes into two halves. These dislocations are the most commonly observed in

α-iron. For the edge dislocation, the dislocation line is oriented along the [121]

direction, whereas the dislocation line for the screw dislocation is oriented along

the [111] direction.

This choice of simulation box geometry is not usual in computer simulations,

but a dislocation is known to destroy the periodicity of the lattice in directions

perpendicular to its line. Consequently, periodic boundary conditions have not
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Figure 2.4: Top view of the cylindrical simulation boxes containing an edge and
a screw dislocation (in the center). Iron atoms in the outer green rings (2 nm
thick) are kept fixed in order to permanently represent the correct displacement
field created by the dislocations.

been applied in any direction except along the dislocation line, which corresponds

to the cylinder axis. A 2 nm thick (about four times the potential cutoff) outer

shell of iron atoms (represented by the green rings in Fig 2.4) was kept fixed in

the simulations. The aim of this rigid boundary condition was to avoid spurious

relaxation that might come from free surface effects, so that the true disloca-

tion strain fields were permanently reproduced in the far-field. An alternative

approach that ensures full periodic boundary conditions introduces a second dis-

location, with an opposite Burgers vector, in the simulation box, such that the

resulting Burgers vector is zero. This dislocation dipole arrangement has been

used, for instance, to compute the core energies and properties of a screw dis-

location in α-iron with ab initio calculations [Clouet 2009]. However, regarding

our work, it would require a much larger simulation box in order to minimize the

interaction between the two dislocations and between the second dislocation and

the interstitial atom. Osetsky and Bacon, in turn, have proposed the periodic

array of dislocations (PAD) method to enforce periodic boundary conditions in

the glide direction [Osetsky 2003], which makes it possible to investigate dislo-

cation gliding under the application of shear stress with molecular dynamics or

molecular statics. This can be modeled, for instance, by displacing atoms in the

free surfaces at the top and at the bottom of the simulation box in opposite di-

rections. In order to implement the PAD method, the simulation box is slightly

deformed in order to acquire a rectangular shape (see Fig. 2.5). If the simulation

box is large enough, such an unbending procedure has no noticeable effect on the

geometry of the dislocation core. The PAD method may be used in a subsequent

stage of the current work, when we will investigate the effect of Cottrell clouds

28



Effect of the stress field of dislocations on carbon diffusion

Figure 2.5: A simulation box containing an edge dislocation before and after
unbending the crystal in order to enforce periodic boundary conditions along the
glide direction (adapted from Fig. 2 in Ref. [Osetsky 2003]).

on dislocation glide. For the moment, the cylindrical approach that we have

adopted, despite its lack of boundary conditions in two dimensions, is much eas-

ier to implement and provides an accurate description of the interaction between

the point defect and the sink in the center, provided that the point defect is far

from the rigid outer boundary.

In the simulation boxes defined above, all O- and T-sites within a cylindrical

volume of radius 6 nm around the dislocation line, excluded the core region, have

been mapped. Therefore, there was at least a distance of 7 nm separating the

interstitial positions at the largest distance from the central sink and the rigid

layer represented in Fig. 2.4. A parenthesis is necessary here: in this chapter

and also in Chapter 3, the region corresponding to the dislocation core has been

defined ad hoc for both dislocation types as a cylinder of radius 4b ≈ 1 nm

that surrounds the dislocation line. This inner cylinder is just wide enough to

encompass the very distorted zone in the vicinity of the dislocations. Carbon

behavior inside this core region is the subject of Chapter 4.

Before introducing an interstitial carbon atom, the simulation box was relaxed

by molecular statics. The dislocation core remained straight for both dislocation

types (that is, it did not exhibit any kink), staying in the center of the simulation

box. After relaxation, except in the vicinity of the dislocation core, the atomic

coordinates did not differ more than a few thousandths of nanometer from the

initial coordinates provided by anisotropic elasticity theory, confirming again the

ability of this theory to predict atomic positions wherever lattice strain is moder-

ate. Then, for every mapped interstitial position, a molecular statics simulation

was launched with a single carbon atom at that position (see Fig. 2.6). For the

octahedral sites, full energy minimization was carried out. For the tetrahedral

sites, the carbon atom was constrained to relax only on the plane perpendicular
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Figure 2.6: Representation of a simulation box containing a carbon atom (small
black disk) occupying an interstitial position in the volume of interest, represented
by the light gray disk. Interstitial positions in the region defined as the dislocation
core, represented by the dark gray disk (diameter equal to 8b ≈ 2 nm), were not
included in the mapping of interstitial sites and thus they were not considered in
the molecular statics simulations presented in this chapter.

to the vector connecting the two neighboring octahedral sites. About 100,000

carbon-dislocation configurations were relaxed by the conjugate gradient algo-

rithm up to the interatomic forces were less than 10−2 eV/nm, which yields a

convergence in the total energies between 1–2 meV. A convergence in the or-

der of 0.1 meV (about one order of magnitude smaller) increases the CPU time

by a factor of two or even more. Given the large amount of configurations, a

compromise between the accuracy and the CPU time was necessary.

2.3.2 Validation of the diffusion mechanism in the pres-

ence of dislocations

In order to gain some confidence on the validity of the simple carbon diffusion

mechanism described previously in a context where the carbon atom interacts

with a dislocation, some minimum energy path calculations with the CI-NEB

method [Henkelman 2000b, Henkelman 2000a], as implemented in LAMMPS,

have been performed for transitions in the vicinity of either an edge or a screw

dislocation. In every CI-NEB simulation, nine images were used. Adjacent im-

ages were connected by a spring with a spring constant k of 10 eV/nm. The total
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Figure 2.7: NEB-calculated minimum energy paths for a carbon atom migrating
between interstitial sites in the vicinity of an edge or a screw dislocation. They
refer to transitions between local energy minima found just above the dislocation
cores (x ≈ 0, y ≈ 0.6 − 0.7 nm, with respect to the dislocation lines). In this
plot, d is the normalized distance between the two extremities of each path. The
saddle points are found in the middle of the path.

energy of each image was minimized by damped dynamics up to the internal and

also the inter-image forces, taken together, were less than 10−2 eV/nm. These

simulations have shown that taking the octahedral sites as the energy minima

and the tetrahedral site as the saddle points for carbon migration seems to be a

good approximation even relatively near the dislocation lines (see Fig. 2.7).

2.3.3 Carbon-dislocation binding energies

The strength and the type of interaction (attractive or repulsive) between a car-

bon atom and a dislocation as a function of the relative positions of the defects
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is given by the corresponding binding energy, defined as follows:

Eb
[O|T ] = E[O|T ],carbon + Edislo − E[O|T ],carbon+dislo (2.5)

In Eq. (2.5), EO,carbon = −10.059 eV and ET,carbon = −9.243 eV are the energies

added by an isolated carbon atom occupying either an O- or a T-site in α-iron

after relaxation, according to the Fe-C potential. They can be easily obtained

by taking the difference between the total potential energies of a large simulation

box with a carbon atom occupying either an O- or T-site and the same simulation

box with no carbon. Edislo, in turn, is the total potential energy of one of the

simulation boxes depicted in Fig. 2.4. E[O|T ]carbon+dislo refers to the total potential

energy of the same simulation box with a single carbon atom in an O- or a T-

site. Eb
[O|T ] > 0 reveals an attractive interaction between the point and the line

defects, whereas Eb
[O|T ] < 0 means that the dislocation repels the carbon atom.

The mapping of carbon-dislocation binding energies for a carbon atom occupying

O- and T-sites near an edge and a screw dislocation is shown in Figs. 2.8 and 2.9,

respectively. In a non-strained iron crystal, all O-sites are energetically equivalent

(as well as the T-sites), but this equivalence is lost even at low strain level, as

reported by Garruchet and Perez for uniaxial strain [Garruchet 2008]. This is

underscored in the neighborhood of a dislocation. The (absolute) binding energies

|Eb
[O|T ]| decrease proportionally to 1/R, where R is the separation between the

defects. One can also see that there is an important angular dependence on

the values of Eb
[O|T ], reflecting the non-homogeneity of the dislocation stress field

and confirming what pioneering models predicted a long time ago [Cottrell 1949,

Cochardt 1955]. Out of the region defined as the dislocation core, the maximum

|Eb
[O|T ]| is smaller than 200 meV for both dislocation types and, for R > 5 nm,

|Eb
[O|T ]| falls below 50 meV.

Around an edge dislocation, both Eb
O and Eb

T are affected by the normal

stresses σxx and σyy created by the line defect, since it is related to the volume

of the locus occupied by the carbon atom in the iron lattice. In the zone under

tension (above the glide plane), the volume of the interstitial site is larger than in

the zone under compression (below the glide plane), which implies that the lattice

relaxes less in the first case in order to accommodate a carbon atom. Owing to

the misfit of the planes just above and below the glide plane, the edge dislocation

is also seen to create a shear stress σxy. Lattice relaxation due to the carbon

atom leads to local tetragonal distortion, and it is much more important when

a carbon atom sits on an octahedral site than in a tetrahedral one, according to

the current EAM potential.Therefore, the shear stress of the edge dislocation has
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Figure 2.8: Mapping of carbon-dislocation binding energies obtained by atomistic
simulations for carbon positions around a straight edge dislocation (in the center)
which is aligned parallel to the [121] direction (perpendicular to the page). The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.
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Figure 2.9: Mapping of carbon-dislocation binding energies obtained by atomistic
simulations for carbon positions around a straight screw dislocation (in the center)
which is aligned parallel to the [111] direction (perpendicular to the page). The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.
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a minor influence on a carbon atom occupying a T-site near the glide plane, thus

in this case Eb
T is not as significant as Eb

O. For the [100] and [001] O-site variants,

in the simulation box orientation that we have adopted, the carbon atom induces

a local shear of the two adjacent (101) planes, i.e., we have a local σxy *= 0 which

interacts with the long range σxy created by the edge dislocation. A carbon atom

in a [010] O-site in turn induces a local σxz shear. Since outside the core the

σxz component of the stress tensor of the edge dislocation vanishes, there is little

interaction between both defects when a carbon atom lies on a [010] O-site near

the glide plane and Eb
O → 0.

As it has been observed in Ref. [Clouet 2008], when the carbon atom ap-

proaches an edge dislocation along its glide plane, the interaction between the

point and the line defect becomes so strong that the dislocation line leaves its

initial position towards the carbon atom. Fig. 2.10 shows the position of the dislo-

cation line as a carbon atom approaches the line defect coming from −∞. Every

position occupied by the carbon atom corresponds to an [001] O-variant. We have

seen in Fig. 2.8 that when it is found occupying interstitial sites of this variant

near the glide plane and the carbon position XC < 0, the carbon atom is attracted

by the dislocation. At a separation distance of approximately 3.5b, the edge dislo-

cation is displaced along its glide plane by about 0.6 nm. Such a displacement is

clearly associated with a discontinuity in the carbon-dislocation binding energy.

This abrupt jump in Eb has been already reported in Ref. [Hanlumyuang 2010],

although the reason has not been explained by the authors.

In contrast with the edge dislocation, the stress field of a screw dislocation is

predominantly shear (σxz and σyz) with small normal contribution restricted to

the close vicinity of the core. Considering that the interaction of a carbon atom

with a dislocation through their respective shear stress is much stronger when

a carbon atom lies in an O-site than in a T-site, as already stated above, Eb
O

is usually much more important than Eb
T in the vicinity of a screw dislocation.

Moreover, due to its high Peierls stress, the screw dislocation does not leave its

initial position as a carbon atom approaches the line defect.

2.3.4 Energy barriers for carbon diffusion

After obtaining the total energies of all carbon-dislocation configurations inside

the volume of interest with molecular statics, it was straightforward to calculate

the energy barriers for all transitions with Eq. (1.4).

Fig. 2.11 depicts a mapping of the energy barriers in the neighborhood of an

edge dislocation, for the six types of transitions that a carbon atom can undergo.
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Figure 2.10: Dislocation line position (XD) as a function of carbon position (XC)
for a carbon atom occupying interstitial sites corresponding to the [001] O-variant
along the glide plane of an edge dislocation. The reference is the initial position
of the dislocation line (in red in the left inset). The carbon-dislocation binding
energy Eb as a function of carbon position is shown in the inset in the middle.

The first thing to be noticed is that the effect of the edge dislocation on the

energy barriers is more pronounced running parallel to the glide plane. Indeed,

the largest variations in the migration energies (ranging from 0.66 eV up to 0.98

eV) occur when a carbon atom jumps between [100] and [001] O-sites near the

glide plane. A carbon atom undergoing such transitions move on the (101) plane

passing through a [010] T-site. The carbon atom sitting on one of these vari-

ants has been seen in Fig. 2.8 to strongly interact with the σxy component of

the dislocation stress tensor that predominates thereby. On the other hand, the

little interaction with the dislocation explains the fact that energy barriers for

transitions starting from a [010] O-site in the vicinity of the glide plane differ

less from the bulk value (0.816 eV) than their counterparts. Although less pro-

nounced, there also are important variations in the migration energies just above

and below the dislocation core, where the point and the line defects interact more

due to their corresponding normal stresses.

For the screw dislocation, one can see in Fig. 2.12 that the variation of the

energy barriers for a given transition is mirrored by the variation of the energy

barriers of the inverse transition. This draws an overall picture of the energy

barriers for carbon migration around a screw dislocation that is much simpler than

what is seen for an edge dislocation. Outside the core of the screw dislocation,

the lowest energy barrier is 0.65 eV and the highest one is 0.89 eV.
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Figure 2.11: Mapping of energy barriers obtained by atomistic simulations for
carbon migration in the vicinity of a straight edge dislocation (in the center)
which is aligned parallel to the [121] direction (perpendicular to the page). The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.
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Figure 2.12: Mapping of energy barriers obtained by atomistic simulations for
carbon migration in the vicinity of a straight screw dislocation (in the center)
which is aligned parallel to the [111] direction (perpendicular to the page). The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.
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Figure 2.13: A random walker sitting in a local minimum (adapted from Fig. 1
in Ref. [Barlett 2009]). In this 1D random walk, the random walker can perform
one of two jumps at a time, either to the left or to the right: in a simple random
walk (a), energy barriers are the same and the probability is of 50% per jump;
in a biased random walk (b), the random walker is likely to jump to the right,
because the energy barriers are lower in this direction.

2.4 Dislocation-induced bias on carbon diffu-

sion

In a simple on-lattice random walk, at every lattice site, the random walker can

take one of the N allowed steps with a probability of 1/N . The random walker

trajectory spreads isotropically and, after a large number of steps, the volume

visited by the random walker will assume an almost spherical shape. A different

situation appears if one step has a lower barrier compared to the other ones. Since

a lower energy barrier increases the probability to take that step, now the random

walker prefers to take it rather than others. Such a random walker performs,

in this case, a biased random walk [Rudnick 2004, Barlett 2009, Codling 2008],

which has as a net effect a drift in the trajectory. In Fig. 2.13, the sketch of a 1D

random walk is depicted to clarify the concept. In this figure, a random walker is

found sitting in a local energy minimum and can take a fixed length step either to

the left or to the right in order to fall into one of the two adjacent potential wells.

When performing a simple random walk (Fig. 2.13 (a)), the random walker will

choose between the adjacent steps with a probability of 50% per step. On the

other hand, if the random walk is biased somehow (Fig. 2.13 (b)), the random

walker now will take steps preferentially to the right.

Biased random walks are widely used, for instance, in computational biol-

39



Effect of the stress field of dislocations on carbon diffusion

ogy to model organism motility [Codling 2008]. In a phenomenon known as

chemotaxis, a bacterium propels itself with the aid of its flagella following what

resembles a random walk. However, the changes in the direction of a bacterium

are dictated by the chemical environment: the organism tends to move towards

directions with increasing food supply gradients and also to avoid directions with

increasing toxin gradients [Macnab 1972]. These different gradients are said to

add a bias to the bacterium motion. Concerning materials science, solid state

diffusion is usually biased owing to the interaction of the diffusing particle with

some applied field (e.g., an external electric field adds a bias to the diffusion of a

charged particle).

A carbon atom jumping from/to octahedral sites in a non-strained bcc iron

lattice is an example of a simple random walker. In this case, the probability that

a carbon atom will perform a jump to a specific octahedral site is 25% and the

step length also is the same for all possible jumps (δ = a0/2). On the other hand,

if the lattice is non-homogeneously strained, as is the case when a dislocation is

present, the energy of the different O- and T-sites change and, as a consequence,

the relative heights of the energy barriers (and thus, the transition probabilities)

change as well, as one can readily deduce from Figs. 2.11 and 2.12. The biasing

field is the long-range stress field of the dislocation and the diffusion of a carbon

atom immersed in it should be therefore better described as a biased random

walk.

The strength and the orientation of the bias added to a random walk are

quantified by the mean displacement vector "〈d〉, defined as follows:

"〈d〉 =
N∑

j=1

Pi→j
"δi→j (2.6)

where Pi→j is the normalized temperature-dependent probability of the transition

i → j, "δi→j is the vector that connects the site i to the site j, and N is the number

of first nearest neighbors of site i (since a carbon atom occupying an octahedral

site in α-Fe can jump to four other neighboring octahedral sites, N = 4). If there

is no bias, "〈d〉 = "0 everywhere (and we have a simple random walk). On the other

hand, if the bias is too strong, the walk cannot be said to be random anymore

because the walker deterministically follows one direction.

Figs. 2.14 and 2.15 show the projection of the vectors "〈d〉, for T = 300 K

and T = 600 K, on the planes perpendicular to the dislocation lines for the edge

and screw dislocations, respectively. In these figures, each arrow corresponds

in fact to the resulting mean displacement vector in an area of 0.4 × 0.4 nm2.

40



Effect of the stress field of dislocations on carbon diffusion

Only vectors with lengths greater than 10−3 nm are plotted. The first thing to

be noticed is that the bias on carbon diffusion is much more important around

an edge dislocation than around a screw dislocation. This is to say that, at the

same temperature, an edge dislocation influences a diffusing carbon atom at a

larger distance. Moreover, as expected, such a bias is drastically reduced as the

temperature increases. In the high temperature limit, the dislocation stress field

should have a slight effect on carbon diffusion, if any, and the carbon atom would

behave almost as a simple random walker.

More interestingly, the dislocation-induced bias does not differ from one dislo-

cation type to the other only in its extent: one can see that both its strength and

its orientation are location dependent. This is obviously a consequence of the fact

that the dislocation stress field varies spatially, establishing a clear contrast with

the bias induced by an uniform external field, as the one reproduced in Fig. 2.13.

Regarding the bias strength, it increases as the carbon atom approaches the dis-

location core, as one should expect. In Fig. 2.14, it is straightforward to see that

the bias on carbon diffusion is not the same above and below the glide plane of

an edge dislocation. When diffusing in the tensile region, a carbon atom is pulled

towards the dislocation core. A quite different picture is shown in the compres-

sive region: a carbon atom thereby is clearly discouraged to reach the dislocation

core from below, it rather prefers to diffuse towards the glide plane. As one can

see in Fig. 2.15, the bias induced by a screw dislocation, in turn, also exhibits

the well-known three-fold symmetry of its stress field: attractive and repulsive

regions around the dislocation line are separated by 120◦.

The bias on carbon diffusion due to the dislocation stress fields should play

the major role in driving the nucleation of a Cottrell atmosphere in the initial

stage of static strain aging, when carbon concentration is low and carbon-carbon

interactions are negligible.

2.5 Carbon diffusion to dislocations: AKMC

simulations

2.5.1 Setting up AKMC simulations

The AKMC simulation box consisted of a rigid lattice where every site corre-

sponded to an O-site in the simulation box employed in molecular statics simu-

lations, thus it was also a cylinder of radius 6 nm. Two absorbing barriers (i.e.,

end points for the AKMC simulations) were present: the so-called core region
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Figure 2.14: Mean displacement vectors "〈d〉 in the vicinity of an edge dislocation
at T = 300 and T = 600 K. Only vectors with lengths greater than 10−3 nm are
plotted. For the sake of readability the vectors were multiplied by 100. The z
component (parallel to the dislocation line) is not shown. Each arrow corresponds
to a vector which is in fact the resulting vector in an area of 0.4 × 0.4 nm2. The
dotted line represents the glide plane.
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Figure 2.15: Mean displacement vectors "〈d〉 in the vicinity of a screw dislocation
at T = 300 and T = 600 K. Only vectors with lengths greater than 10−3 nm are
plotted. For the sake of readability the vectors were multiplied by 100. The z
component (parallel to the dislocation line) is not shown. Each arrow corresponds
to a vector which is in fact the resulting vector in an area of 0.4 × 0.4 nm2. The
dotted line represents the glide plane.
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(R < 4b ≈ 1 nm) and the outer boundary (R > 6 nm). In the first case, a

carbon atom is considered trapped by the dislocation; in the other case, the car-

bon trajectory simply is not followed anymore. Each set of AKMC simulations

generated 100,000 carbon trajectories with a minimum of 100 and a maximum

of 100,000 jumps at temperatures ranging from T = 300 K to T = 600 K. This

minimum number of jumps was chosen in order to prevent including in the statis-

tics trajectories that either fall into the dislocation core or leave the simulation

box through the outer boundary too quickly. Starting points have been chosen at

random and thus equally distributed inside the simulation box, so that the result-

ing trajectories have covered its whole volume and explored as many pathways as

possible. Additionally, AKMC simulations were also performed where the energy

barriers were considered as 0.816 eV (i.e., the energy barrier for carbon diffusion

in non-strained bulk α-iron) everywhere. Comparison with the results of these

simple (isotropic) random walks allows to check the effect of the dislocation stress

fields on carbon diffusion.

2.5.2 Analysis of carbon trajectories

Because of the the boundary conditions, the kinetics given by the AKMC sim-

ulations is in fact a competition between the two absorbing barriers. Therefore,

it is worth considering in separate trajectories that left the simulation box and

trajectories that terminated in the dislocation cores (which are the ones that we

are more interested in). Indeed, the unphysical sink at R > 6 nm does not have

any active influence on carbon trajectories: since it does not create any stress

in the lattice, a carbon atom does not “see” the outer boundary at any moment

except just before reaching it, if it does. On the other hand, it becomes more

likely that a carbon trajectory will leave the simulation box rather than being

trapped by the dislocation as the trajectories start farther from the dislocation

line. Care should be taken because this changes the rate of depletion of carbon

atoms in solid solution due to dislocation trapping in the latest stages of the

simulated kinetics, inducing a pseudo-saturation not related at all to the physical

saturation of dislocations observed in experiments.

Figs. 2.16 and 2.17 show the evolution of the fraction of carbon atoms trapped

by either an edge or screw dislocation, respectively, in the course of AKMC

simulations. Regarding the edge dislocation, a first noticeable effect is that the

kinetics is accelerated with respect to the simple random walk case. Such an

effect is obviously temperature-dependent, but it still is present at the highest

temperature (600 K) considered in this study. It is also consistent with the
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carbon atom diffusing most of the time (about 80% of the total number of jumps,

at T = 300 K) above the glide plane, where the normal tensile stress due to the

edge dislocation lowers the activation energies with respect to the non-strained

bulk value, as can be seen in Fig. 2.11, which speeds up diffusion. For the

screw dislocation, the effect is the opposite: there is a delay in the beginning

of the stress-assisted kinetics with respect to the simple random walk one, clearly

observed at T = 300 K. Such a delay almost disappears at T = 600 K. Therefore,

diffusion of a carbon atom in the vicinity of a screw dislocation, at least at low

temperatures, is slowed down owing to the interaction of the impurity with the

dislocation stress field.

Compared to the simple random walk simulations, in which 27% of the car-

bon trajectories fall into the central trap purely by chance, the fraction of carbon

trajectories ending either in the edge or in the screw dislocation core rather than

leaving the simulation box ranges between 32–34% and between 30–32%, respec-

tively. In other words, both the edge and the screw dislocations have the ability

to drag solute carbon atoms found diffusing nearby, although such a net attrac-

tive character, for both dislocation types, seems to be too slight at a first sight.

This is somewhat true for the screw dislocation, but it does not apply at all to

the edge dislocation. As illustrated in Fig. 2.14, the carbon atom feels differently

the influence of an edge dislocation above and below the glide plane, even rela-

tively far from the dislocation line. Consequently, as one can see in Fig. 2.18, the

probability that a simulated carbon trajectory will end in the core region of an

edge dislocation strongly depends on where it starts. Between 40% and 50% of

the trajectories starting in the zone under tension have been trapped by the edge

dislocation. On the other hand, the trapping probability drops below 20% for

trajectories starting in the zone under compression. Concerning the trajectory

end point, irrespective of temperature, between 77–85% of the carbon trajecto-

ries have reached the dislocation core from the tensile half of the simulation box

(above the glide plane), which implies that most of the trajectories starting in the

compressive half and terminating in the core have crossed first the glide plane.

2.5.3 Application of an analytical kinetic model to simu-

lation results

Direct comparison of the kinetics simulated by AKMC with aging experiments

is challenging. Ideally, one should be able to reproduce the evolution of the

properties of a realistic system in simulations. However, in practice, the actual

microstructure of most of the materials comprises multiple defects (e.g., vacancies,

45



Effect of the stress field of dislocations on carbon diffusion

!"

!"#$

!"#%

!"#&

!"#'

!"#(

$"
!)

$"
!(

$"
!'

$"
!&

$"
!%

$"
!$

$"
"

$"
$

$"
%

$"
&

$"
'

?
57
=
@9
4
A
!4
B!
@5
7
C
C
/
2
!D
!7
@4
6
E

F96/!.E1

-2;/

FG&""!H
FG'""!H
FG(""!H
FG)""!H

Figure 2.16: Solid lines represent the fraction of carbon trajectories that termi-
nated in the region defined as the core of an edge dislocation (R < 4b ≈ 1 nm)
during AKMC simulations as a function of time for temperatures ranging from
300 K to 600 K. Dotted lines, in turn, represent the results of simple random
walks (∆Em = 0.816 eV).
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Figure 2.17: Solid lines represent the fraction of carbon trajectories that termi-
nated in the region defined as the core of a screw dislocation (R < 4b ≈ 1 nm)
during AKMC simulations as a function of time for temperatures ranging from
300 K to 600 K. Dotted lines, in turn, represent the results of simple random
walks (∆Em = 0.816 eV).
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Figure 2.18: Fraction of carbon trajectories, starting either in the zone under ten-
sion or in the zone under compression near an edge dislocation, that terminated
in the dislocation core in AKMC simulations.

voids, dislocations, precipitates, grain boundaries) that affect in different manners

the aging process. This implies a level of complexity that puts realistic systems

most of times out of reach of atomistic simulations. Moreover, the scales involved

in aging experiments and simulations are not the same.

Despite the difficulties outlined above, a bridge between aging experiments

and atomic scale simulations may be established through simple analytical kinetic

models commonly used to interpret experimental results, such as aforementioned

Hartley’s model. For instance, results reported by A. K. De and co-workers

fitted to Eq. (2.4) show that the kinetics of strain aging in prestrained ULC

bake hardening steels apparently, at small t, obey the so-called t
2
3 kinetic law

[De 2001, De 2000]. The effective activation energies for carbon segregation in the

studied specimens lie between 0.82–0.85 eV. According to their interpretation of

the application of Hartley’s model to the experimental data, dislocation densities

up to a level of 10% prestrain have no important effect on the kinetics of strain

aging at low temperatures (320–410 K).

In the following analysis, we assumed that each dislocation-trapped trajec-

tory refers to the diffusion of a single carbon atom to a dislocation and that

the ensemble of many simulations provides a picture of carbon segregation to

the line defects. This implies a low carbon concentration, so that every carbon

trajectory is independent from the others and every arriving carbon locks a dif-

ferent segment of an infinitely long dislocation line. Given the relatively small
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volume of the simulation box, the carbon atom interacts with the central sink

during most of the simulated time. Simulation results shown in Figs. 2.16 and

2.17 were fitted at the best (asymptotic standand error below 1%) by the nonlin-

ear least-squares Marquardt-Levenberg algorithm [Press 2007], as implemented

in Gnuplot, to Eq. (2.4), with the fraction of carbon atoms trapped by the dis-

location replacing ∆σ/∆σmax. As in the experimental work, only the initial part

of the curves fits to Hartley’s model.

The kinetic parameters obtained from the simulated data can be seen in Ta-

ble 2.1. Values of n for both dislocation types are within the experimental range

(0.59–0.80) reported in Ref. [De 2001]). Near an edge dislocation, in the “biased

walks” (i.e., the AKMC simulations where the effects of the dislocation stress

field on the energy barriers are taken into account), n varies very little, remain-

ing close to 0.66 (≈ 2/3). A different picture is seen for carbon diffusion to a

screw dislocation: n varies from 0.66 (T = 600 K) to 0.75 (T = 300 K). Knowing

that D = D0 exp (−Em
eff/kT ), where k is the Boltzmann constant and T is tem-

perature, the effective activation energy Em
eff has been obtained from the slope of

ln (D) as a function of 1/T . Not surprisingly, Em
eff = 0.817 eV for the “unbiased

walks”, a difference of only 1 meV with respect to the energy barrier used for

all transitions in these walks. Regarding the stress-assisted walks, the effective

activation energy in the paths followed by the carbon atom is slightly lowered in

the vicinity of the edge dislocation (0.809 eV) and augmented in the vicinity of a

screw one (0.825 eV). In any case, Em
eff falls within the wide range (0.77–0.95 eV)

of apparent activation energies obtained in strain aging experiments found in the

literature [Elsen 1993, De 2001, De 2000]. Overall, these results indicate that,

although some effects of the dislocations on the kinetic parameters are actually

observed in AKMC simulations, they seem to be below what can be detected by

aging experiments, the results of which present large variations for all kinetic pa-

rameters. In addition, it should be pointed out that the AKMC simulations also

show that trapping of carbon atoms by the dislocation proceeds according to the

same kinetic law as ∆σ/∆σmax at small t. This underlines the fundamental link

between the microscopic phenomenon assessed by the AKMC simulations and

the change in mechanical properties observed in the macroscopic experiments.

2.6 Overview

Molecular statics has been employed to obtain the total energies for a carbon atom

occupying octahedral and tetrahedral positions within a radius of 6 nm around an
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Dislocation Simulation type T (K) n D (m2/s) D0 (m2/s) Em
eff

Edge Biased walk 300 0.62 4.2 × 10−21

400 0.65 1.0 × 10−17

500 0.66 1.2 × 10−15

600 0.65 2.6 × 10−14 1.7 × 10−7 0.809

Unbiased walk 300 0.65 2.6 × 10−21

400 0.65 7.0 × 10−18

500 0.66 8.1 × 10−16

600 0.66 1.9 × 10−14 1.4 × 10−7 0.817
Screw Biased walk 300 0.75 2.3 × 10−21

400 0.71 7.0 × 10−18

500 0.69 8.6 × 10−16

600 0.66 2.0 × 10−14 1.7 × 10−7 0.825

Unbiased walk 300 0.64 2.6 × 10−21

400 0.65 7.0 × 10−18

500 0.66 8.0 × 10−16

600 0.66 1.9 × 10−14 1.4 × 10−7 0.817

Table 2.1: Kinetic parameters obtained from AKMC simulations after fitting to
Eq. (2.4). “Biased walk” refers to the AKMC simulations with energy barriers
calculated by molecular statics and “Unbiased walk” refers to simple random
walks with the same energy barrier (0.816 eV) for all transitions.
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edge or a screw dislocation, excluded a cylindrical region of radius 4b surrounding

the dislocation line, taken as the dislocation core. The energy barriers calculated

from molecular statics results have been used to build a static catalog for an

AKMC code. AKMC simulations have generated a number of independent carbon

trajectories for temperatures in the 300–600 K range. Carbon diffusion is seen to

be biased by the stress field of dislocations, with location dependent transition

probabilities. Such a bias, as expected, decreases with temperature, and it is

stronger when the carbon atom approaches an edge dislocation than a screw

dislocation. In the compressive half of an edge dislocation, the carbon atom

is repelled by the dislocation core and either it moves in oblique trajectories

towards the glide plane or escapes the influence of the edge dislocation, moving

away from the sink. In the tensile half, the carbon atom is more likely to diffuse

directly towards the dislocation core. The bias on carbon diffusion around a screw

dislocation, in turn, reproduces the three-fold symmetry of its stress field, with

attractive zones alternating repulsive ones. Both dislocations have been seen to

present a net attractive character, dragging a carbon atom diffusing nearby.

2.7 Ongoing work

In order to model the actual kinetics of carbon diffusion to dislocations, the

AKMC simulations presented in this chapter have to be improved. The unphysical

absorbing barrier at a relatively short distance from the dislocation is certainly

undesirable because it has been seen to affect the simulated kinetics. For the time

being, there is no straightforward way to solve this problem, but some attempts

are under consideration.

A first possibility is to treat the outer boundary as a reflecting barrier, that

is, when the carbon atom reaches it, it is sent back to the simulation box instead

of being lost. However, although this artifact should not have a great influence

on the simulated kinetics in a much larger simulation box, since a carbon atom

diffusing near the outer boundary would behave as a simple random walker, it is

not sure this would be the case in a simulation box as small as the one that we

have employed, where the carbon atom interacts with the dislocation most of the

time.

A second and more promising solution is to enforce full periodic boundary

conditions by remapping, by the criterion of proximity, the sites in the cylin-

drical simulation box into a non-strained rectangular one, assigning the carbon

migration energy in non-strained bcc iron (0.816 eV) to the remaining sites in
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the latter. This implies, particularly in the case of an edge dislocation, an abrupt

interacting-to-noninteracting change regarding the point and the line defects,

which may also affect the simulated kinetics. A possible way to improve this

approach is to employ fast elasticity calculations to obtain energy barriers for

carbon diffusion in the far-field. The applicability of elasticity calculations for

this purpose is discussed in Chapter 3.
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Chapter 3

Comparison of atomistic and

elasticity approaches for carbon

diffusion near line defects

Abstract

Energy barriers for carbon migration in the neighborhood of line defects in bcc

iron obtained by atomistic (molecular statics) simulations are compared to the

predictions of anisotropic elasticity theory. The agreement is better for the octa-

hedral sites (energy minima) than for the tetrahedral sites (saddle points). Ab-

solute differences in the energy barriers obtained by the two methods are usually

below 5 meV at distances larger than 1.5 nm from the screw dislocation and 2

nm (up to 4 nm in the glide plane) from the edge dislocation. AKMC simulations

performed at T = 300 K and additional analysis based on the activation energies

show that the methods are in good qualitative agreement, despite some impor-

tant quantitative discrepancies due to the largest absolute errors found near the

dislocation cores.
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3.1 Introduction

Elasticity theory has been long used to estimate the binding energy of dislocations

with other lattice defects (e.g., interstitial and substitutional atoms, vacancies,

other dislocations). In their pioneering work, Cottrell and Bilby estimated the

binding energy between an edge dislocation and a carbon atom in solid solution in

α-iron by considering only the size interaction between the defects [Cottrell 1949]:

Eb = −P∆V =
1

3
Tr

(
σd

ii

)
∆V (3.1)

where P , which is proportional to the trace of the dislocation stress tensor σd,

corresponds to the pressure created by the dislocation at the position of the

point defect and ∆V is the relaxation volume of the interstitial atom. Despite

its simplicity, this approximation holds to a large extent for vacancies and sub-

stitutional atoms, known to act as dilatation centers, but it is not appropriate

for an interstitial carbon atom that also induces tetragonal distortion in the iron

matrix. Cochardt and co-workers improved this calculation by including also the

local shear strain created by the interstitial atom (i.e., the shape interaction)

[Cochardt 1955]. In both calculations, the dislocation stress field was obtained

according to isotropic elasticity. However, owing to its cubic symmetry, bcc iron is

anisotropic. This later motivated Douthwaite and Evans to introduce anisotropic

elasticity within Cochardt’s calculations [Douthwaite 1973].

It has been recently shown that results of elasticity calculations compare well

to atomistic simulations on the interaction of vacancies with an edge dislocation in

face centered cubic metals (Al, Au, Cu, Ni) [Clouet 2006]. Clouet and co-workers

have also reported a good quantitative agreement between the carbon-dislocation

binding energies obtained by atomistic simulations and anisotropic elasticity the-

ory [Clouet 2008], provided that carbon-dislocation separation is larger than 2

nm (edge) and 0.2 nm (screw). It should be pointed out that isotropic elasticity

predictions, in this case, provide only a qualitative accord with atomistic sim-

ulations. More recently, Hanlumyuang and others modeled carbon distribution

and concentration around dislocations in bcc iron at T = 300 K and T = 400

K with a combination of DFT and anisotropic elasticity calculations, concluding

that effects of chemistry and magnetism beyond those already reflected in the

elastic constants can be safely neglected [Hanlumyuang 2010]. Taken together,

those works provide evidence that a continuum approach based on anisotropic

elasticity theory can accurately describe the interaction of a point and a line de-

fect provided that they are separated by a minimum distance to be determined
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on a case-by-case basis.

Energy barriers for transitions at the atomic scale are usually obtained by

atomistic simulations, as reported in Chapter 2. These simulations provide an

approximate description of the true chemical environment by employing some

simplified description of the atomic interactions involved. On one hand, it is true

that this approach represents an extraordinary gain in computational time com-

pared to state-of-the-art DFT calculations, which explicitly take into account the

electronic structure contribution. On the other hand, depending on the system

size and number of simulations, computational time remains an important issue.

The next step is therefore to check whether elasticity calculations are also accu-

rate when applied to the study of diffusion of an impurity that interacts with a

dislocation. Indeed, in a recent work, Chen and co-workers employed elasticity to

obtain energy barriers to feed a KMC simulation performed to investigate the role

of solute segregation on the strength and the evolution behavior of dislocation

junctions [Chen 2008]. However, in their model, the saddle point energies have

been assumed to be constant.

In this chapter, the carbon-dislocation binding energies and the energy barri-

ers for carbon migration in the neighborhood of an edge and a screw dislocation

have been calculated by anisotropic elasticity theory and compared to the results

of the molecular statics simulations presented in Chapter 2. The aim is to assess

the extent to which carbon diffusion in a bcc Fe lattice strained by the presence

of dislocations can be described purely by the elastic interactions between the

point and the line defect.

3.2 Elasticity approach for the interaction be-

tween point and line defects

In contrast with atomistic simulations, elasticity theory assumes a continuum

description of a material. The underlying chemistry or other atomic properties

of the host crystal not reflected in the elastic constants are not considered. The

elastic constants of the bcc iron matrix corresponding to the Fe-Fe potential are

C11 = 243, C12 = 145 and C44 = 116 GPa. Within elasticity theory, a point

defect, such as carbon, is seen as a singular source of stress and modeled by its

force moment tensor, also called the “elastic dipole”, Pij [Bacon 1980].

The elastic dipole Pij can be readily deduced from atomistic simulations by

introducing the point defect in a simulation box of fixed volume V with periodic

boundary conditions in all directions, and then performing full coordinate opti-
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mization with a molecular statics algorithm (e.g., conjugate gradient). Elasticity

theory then predicts that the homogeneous stress which develops in the simula-

tion box varies linearly with the inverse of the volume according to the following

equation:

σij = − 1

V
Pij (3.2)

Both the O- and T- interstitial sites have a tetragonal symmetry with the tetrag-

onal axis defined by the variant type. In the orientation given by "ux = (1, 0, 0),

"uy = (0, 1, 0) and "uz = (0, 0, 1), the elastic dipole tensor Pij should therefore take

the following form:

(Pij) =




Pxx 0 0

0 Pyy 0

0 0 Pzz



 (3.3)

with only two different diagonal terms (Pyy = Pzz for instance for the [100]

variant). As a consequence of Eq. (3.2), shear components of the stress tensor

vanishes and the off-diagonal terms obey the same symmetry.

Fig. 3.1 presents σij(1/V ) for a carbon atom in a [100] octahedral variant. The

corresponding values of the non-zero components of the Pij tensor are Pxx = 8.03

eV and Pyy = Pzz = 3.40 eV. For the other two O-variants, the values of Pii are

obtained by performing the appropriate permutations. In the same figure we can

see also σii(1/V ) for the [010] T-variant. In this case we have Pxx = Pzz = 6.66

eV and Pyy = 4.87 eV. Similar to the O-variants, the diagonal components of

the Pij tensor must be permuted to find the ones corresponding to the other two

T-variants.

From the Pij tensor associated with one of the interstitial sites, the corre-

sponding relaxation volume ∆V of carbon in bcc iron within the elastic model is

easily obtained by the following equation:

∆V[O|T ] =
Tr(Pij)

C11 + 2C12
(3.4)

which results in ∆VO = 0.0045 nm3 and ∆VT = 0.0055 nm3. The migration

volume ∆Vm = ∆VT − ∆VO = 0.001 nm3 compares well to experimental results

[Wuttig 1971, Bosman 1960, Bass 1962].

Anisotropic elasticity theory [Eshelby 1955, Douthwaite 1973] with the for-

mulation of the elastic dipole by Bacon and co-authors [Bacon 1980] establishes

that the binding energy between a point defect and a dislocation is obtained by

the following equation:

Eb = Pijε
d
ij (3.5)
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Figure 3.1: Stress as a function of the inverse of the simulation box volume for
a simulation box with a carbon atom sitting in either a [100] O-variant or [010]
T-variant. Symbols refer to atomistic simulations results and lines represent their
linear regression.

where εd
ij is the strain field of the dislocation at the location of the point defect

[Stroh 1962, Stroh 1958]. After obtaining the binding energies for a carbon atom

occupying an O- or T-site, the corresponding energy barrier can be obtained by

rearranging Eq. (2.5):

E[O|T ],carbon+dislo = E[O|T ],carbon + Edislo − Eb
[O|T ],elast (3.6)

and then taking the difference in Eq. (1.4):

Em
elast = ET,carbon+dislo − EO,carbon+dislo

= ET,carbon + Edislo − Eb
T,elast −

(
EO,carbon + Edislo − Eb

O,elast

)

= Em
bulk − Eb

T,elast + Eb
O,elast (3.7)

where Em
bulk = ET,carbon − EO,carbon = 0.816 eV is the energy barrier for carbon

migration in a non-strained iron matrix.
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3.3 Comparison of elasticity calculations to

atomistic simulations

3.3.1 Differences in the migration energies

Anisotropic elasticity calculations have been carried out with the Babel code,

developed by E. Clouet at CEA-Saclay. To obtain the binding energies Eb
O,elast

and Eb
T,elast with Eq. (3.5), first the Pij tensors associated with the O- and T-sites

were rotated according to the orientation of the simulation boxes used in atomistic

simulations (see Fig. 2.4) in order to describe the local stress field of the carbon

atom with respect to the dislocation line. Then the Volterra displacement field of

the edge or the screw dislocation was applied to the positions of the interstitial

sites found in a non-strained bcc iron lattice.

A mapping of the absolute differences between the binding energies ob-

tained by atomistic simulations and elasticity calculations (i.e., |∆Eb
[O|T ]| =

|Eb
[O|T ],atom − Eb

[O|T ],elast|) can be seen in Figs. 3.2 and 3.3 for carbon positions

around an edge and a screw dislocation. Such differences represent the abso-

lute errors that one should expect by replacing molecular statics by anisotropic

elasticity theory. Not surprisingly, the agreement is much better when the car-

bon atom is closer to the screw than to the edge dislocation. A point raised by

Ref. [Clouet 2008] helps to explain this discrepancy. In the elasticity calculations,

only the Volterra displacement field of the dislocations has been taken into ac-

count. Nonetheless, the relaxation of the dislocation core and its surroundings

with the current EAM potential yields an additional, shorter in range, displace-

ment field. Considering that such a relaxation is larger for the edge dislocation

than for the screw dislocation, the resulting change of the dislocation stress field

also is larger. For the T-sites, one can see that near the dislocation line the

agreement is not as good as for the O-sites. We found a particularly noticeable

discrepancy for the [010] T-variant in the vicinity of the edge dislocation glide

plane, for which elasticity theory predicts almost no interaction between the de-

fects (Eb
T,elast < 10−7 eV), in great contrast with atomistic simulations (Eb

T,atom

is in the order of 10−3 eV), so that we have |∆Eb
T | ≈ |Eb

T,atom|. Consequently,

the relative error in this case is enormous. The absolute error, in turn, is small

simply because |Eb
T,atom| is small. As we have seen in Chapter 2, when a carbon

approaches an edge dislocation along its glide plane and reaches a distance of ap-

proximately 3.5b from the dislocation line, the edge dislocation leaves its initial

position and moves towards the interstitial atom. Since the carbon-dislocation
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Figure 3.2: Mapping of absolute differences (errors) |∆Eb| between the binding
energies obtained by atomistic simulations and anisotropic elasticity calculations
as a function of carbon position around an edge dislocation.

separation is no longer the same as in elasticity calculations, it is worthless to

compare the methods in this situation.

The energy barrier Em
elast was obtained according to Eq. (3.7). The mapping

of the absolute errors |∆Em| between energy barriers obtained by each method is

shown in Fig. 3.4. Despite the fact that errors in binding energies may be cumu-

lative in Eq. (3.7), from a qualitative point of view, the energy barriers calculated

by both methods present the same trend. The relative errors in the energy barri-

ers are usually very low (less than 5%). One can see that |∆Em| is larger around

an edge dislocation (ranging from 4 to 6 meV on average) than around the screw

dislocation (generally below 3 meV). Moreover, |∆Em| is within the same order

of magnitude of energy convergence in atomistic simulations (between 1–2 meV),

except very close to the dislocation core. Although |∆Em| is small in absolute

terms, it is worthwhile to point out that, in statistical mechanics, quantities that

depend on migration energies (e.g., the probability of a carbon jump in bcc iron)

are proportional to the Boltzmann factor exp (−Em/kT ), where k is the Boltz-

mann constant and T is temperature. Consequently, owing to the exponential

dependence, even small errors in the activation energies may yield large differ-

ences in the final results. For instance, if a threshold of about 20% is tolerated

for the relative error in quantities determined by the Boltzmann factor, at room

temperature (T = 300 K) it means a maximum absolute error of only 5 meV in

the activation energies. This implies a minimum carbon-dislocation separation of

about 1.5 nm for the screw dislocation and of about 2 nm for the edge dislocation

(up to 4 nm in its glide plane).
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Figure 3.3: Mapping of absolute differences (errors) |∆Eb| between the binding
energies obtained by atomistic simulations and anisotropic elasticity calculations
as a function of carbon position around a screw dislocation.

Figure 3.4: Mapping of absolute differences (errors) |∆Em| between the energy
barriers obtained by atomistic simulations and anisotropic elasticity calculations
as a function of carbon position around an edge (left) or a screw (right) disloca-
tion.
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3.3.2 Dislocation-induced bias on carbon diffusion

In Chapter 2, it has been shown that a dislocation induces a location-dependent

bias on the random walk performed by a carbon atom as it interacts with the stress

field of the line defect. Figs. 3.5 and 3.6 allow to compare the mean displacement

vectors "〈d〉atom and "〈d〉elast around an edge and a screw dislocations, respectively,

for T = 300 K (only vectors with a magnitude greater than 10−3 nm are shown).

For the edge dislocation, both methods predict that a carbon atom above the glide

plane tends to go to the dislocation core. On the other hand, below the glide

plane (region under compression), the carbon atom tends to move obliquely with

respect to the dislocation core towards the glide plane. For the screw dislocation,

one can see that the bias is much less pronounced than in the edge case. Both

methods reflect in a similar way the effect of the three-fold symmetry of the

screw dislocation stress field on carbon diffusion: attractive (repulsive) zones are

separated by 120◦.

3.3.3 Carbon diffusion to dislocations

In order to evaluate how the differences in the activation energies affect the sim-

ulated kinetics of carbon diffusion near a dislocation, we also performed AKMC

simulations with transition rates obtained by elasticity calculations at T = 300 K

and compared to the simulations presented in Chapter 2 at the same temperature.

The simulation box in this case also consisted of a cylinder of radius 6 nm with

two absorbing barriers in the directions perpendicular to the dislocation line: the

dislocation core (an inner cylinder of radius 4b) and the open outer boundary.

Periodic boundary conditions were only used in the z direction, parallel to the

dislocation line.

Starting by the edge dislocation, atomistic simulations and elasticity calcu-

lations are in agreement when predicting the amount of trajectories that ended

in the dislocation core (about 34%; 27% in simple random walks). Thus the

probability that a carbon atom will be trapped by the edge dislocation instead

of leaving the simulation box is the same for both methods. As previously said,

a feature of the edge dislocation is to split the simulation box into two different

regions, one under tension and the other under compression (above and below

the glide plane, respectively). We have seen that, irrespective of the method em-

ployed to obtain the migration energies, about 3/4 of the stress-assisted carbon

trajectories that ended in the core of the edge dislocation started in the tension

half. Moreover, considering only the carbon atoms trapped by the core whose
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Figure 3.5: Mean displacement vectors "〈d〉atom and "〈d〉elast in the vicinity of an
edge dislocation at T = 300 K. Only vectors with lengths greater than 10−3 nm
are plotted. For the sake of readability the vectors were multiplied by 100. The z
component (parallel to the dislocation line) is not shown. Each arrow corresponds
to a vector which is in fact the resulting vector in an area of 0.4 × 0.4 nm2.
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Figure 3.6: Mean displacement vectors "〈d〉atom and "〈d〉elast in the vicinity of screw
dislocation at T = 300 K. Only vectors with lengths greater than 10−3 nm are
plotted. For the sake of readability the vectors were multiplied by 100. The z
component (parallel to the dislocation line) is not shown. Each arrow corresponds
to a vector which is in fact the resulting vector in an area of 0.4 × 0.4 nm2.
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Dislocation Method n D (m2/s)
Edge Molecular statics 0.62 4.2 × 10−21

Elasticity calculations 0.66 2.5 × 10−21

Simple random walk 0.65 2.6 × 10−21

Screw Molecular statics 0.75 2.3 × 10−21

Elasticity calculations 0.70 1.7 × 10−21

Simple random walk 0.64 2.6 × 10−21

Table 3.1: Kinetic parameters obtained from AKMC simulations after fitting to
Eq. (2.4).

trajectories started in the half under compression, more than 80% diffused first

towards the glide plane before being led to the dislocation core. Therefore, it is

very unlikely according to both methods that a carbon atom arrives to the core

of an edge dislocation coming directly from the compression region. Regarding

the screw dislocation, in contrast with edge, the probability that carbon trajecto-

ries generated from the atomistic-calculated migration energies terminates in the

screw dislocation core (32%) is slightly higher than for elasticity results (29%).

We have also checked whether atomistic simulations and elasticity calculations

yield similar kinetics of carbon diffusion to dislocations. The evolution of the

fraction of carbon atoms trapped by the edge or the screw dislocation is depicted

in Fig. 3.7. The curves show the well-known sigmoidal shape usually reported in

aging experiments [Lavaire 2001, Lavaire 2004, De 2001]. There is also a delay in

elasticity-informed AKMC simulations with respect to atomistic-informed ones

that starts since the first carbon atoms are trapped by the dislocation. Those

are generally the ones closest to the dislocation core, thus suggesting this is a

cumulative effect of the increasing absolute errors as the carbon atom approaches

the sink. Simulation results were also fitted to Eq. (2.4) in the same way as in

Chapter 2; the corresponding kinetic parameters n and D are shown in Table 3.1

for comparison. The t
2
3 kinetic law, again with small deviations, also holds for

the trajectories generated from elasticity-calculated transition rates. One can see

that the effective diffusion coefficients obtained from elasticity-informed AKMC

simulations are smaller than the ones from atomistic-informed simulations, but

within the same order of magnitude.

3.3.4 The mean residence time

The speed of a diffusional process in the solid state is related to the mean elapsed

time 〈τ〉 that the system spends at every accessible state. The mean elapsed time
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Figure 3.7: Fraction of carbon trajectories that terminated in the region defined
as the core (R < 4b ≈ 1 nm) of either an edge or a screw dislocation during
AKMC simulations as a function of time at T = 300 K.

in a specific location i can be calculated by [Voter 2002]:

〈τ〉 =
1

Ωi
=

[

ν0

N∑

j=1

exp

(−Em
i→j

kT

)]−1

(3.8)

In this equation, Ωi is the sum of the transition rates that the system can undergo

starting from state i and ν0 is the attempt frequency, in the order of 1013 Hz.

In Figs. 3.8 and 3.9, a mapping of 〈τ〉 as a function of carbon position with

respect to the dislocation line at T = 300 K obtained by atomistic simulations

and elasticity calculations is shown. For comparison, 〈τ〉 ≈ 1.25 s for Em = 0.816

eV (simple random walk) and the same ν0. One can see that, around an edge

dislocation, 〈τ〉atom and 〈τ〉elast exhibits the same trend: the carbon atom diffuses

faster as it approaches the dislocation in the region under tension and slower as

it does the same coming from the region under compression or in the vicinity of

the glide plane. On the other hand, the cumulative effect of the differences in the

migration energies calculated by each method is also evident. The mean relative

errors as a function of distance to the edge dislocation line between 〈τ〉atom and

〈τ〉elast reveal that elasticity calculations leads to an overestimation of the mean

elapsed time (and, consequently, underestimation of the diffusivity) with respect

to atomistic simulations of at least 20% (reaching 50% near the core) within the

maximum radius of 6 nm considered in this work. Disagreement between 〈τ〉atom

and 〈τ〉elast, in turn, becomes noticeable only when the carbon atom is about 2
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Figure 3.8: Mapping of mean elapsed times 〈τ〉atom and 〈τ〉elast at T = 300 K
as a function of carbon position with respect to the edge dislocation line. The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.

nm away from the screw dislocation line. An interesting point is that the EAM

potential (and also elasticity) predicts that the carbon atom diffuses slower as it

approaches the core of a screw dislocation, thus explaining the delay of stress-

assisted trajectories with respect to simple random walks in Figs. 3.7 and 2.17.

It is also the same picture found in the vicinity of the glide plane of an edge

dislocation, where σxy is the predominant component of the stress tensor. This

suggests that shear stress slows down carbon diffusion.

3.4 Overview

The results of two different methods that can be applied to obtain carbon mi-

gration energies near dislocations in α-iron have been presented in this chapter.

Atomistic simulations describe the Fe-C system as an ensemble of particles that

interact with each other according to an interatomic potential, in this work, an

EAM potential fitted to ab initio calculations. Anisotropic elasticity theory, in

turn, considers a continuum medium distorted by the strain fields of the line

and the point defect. Despite such an important difference, the methods agree

reasonably (absolute errors of less than 5 meV on average) if the carbon atom

is far enough from the dislocation lines. However, it should be pointed out that

even small absolute errors in the migration energies may lead to significative

temperature-dependent errors in quantities that depend on the Boltzmann fac-

tor. Indeed, some important discrepancies have been found in AKMC simulations

performed at T = 300 K, thus indicating that the atomistic treatment still is nec-

65



Comparison of atomistic and elasticity approaches

Figure 3.9: Mapping of mean elapsed times 〈τ〉atom and 〈τ〉elast at T = 300 K
as a function of carbon position with respect to the screw dislocation line. The
gray circle in the center (diameter equals to 8b) refers to the region defined as
the dislocation core.

essary when examining carbon behavior in the vicinity of the dislocation core,

where errors due to the elasticity approximation are the largest. In future work,

atomistic simulations and anisotropic elasticity calculations may be incorporated

into a single model using AKMC simulations to investigate the dynamics of Cot-

trell atmosphere formation in α-iron.

3.5 Ongoing work

Mesoscopic models based on an elastic description of the interaction between

point defects and dislocations were already used to simulate Cottrell atmo-

sphere formation in α-iron. For instance, Krempaszky et al performed finite

element calculations to model carbon segregation to dislocations in bcc iron

[Krempaszky 2006], obtaining good agreement with aging experiments. How-

ever, such models do not draw a fine picture of the segregation process. In other

words, the actual carbon trajectories are not simulated at all. Since the segre-

gation process spans long time scales (from a few hours up to some days), far

beyond what can be achieved by molecular dynamics, it remains a seemingly

insurmountable challenge to atomistic approaches based on time discretization.

The results presented in this chapter, in turn, allow us to envisage a protocol to

employ AKMC to perform realistic atomic scale simulations of carbon segregation

to dislocations and the consequent formation of Cottrell clouds while keeping

computational time reasonable. This can be achieved by partitioning the process

of obtaining the energy barriers for AKMC simulations as follows (Fig. 3.10):
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1. In order to speed up AKMC simulations, a static catalog should be em-

ployed in situations where the transitions that the system can undergo are

predictable:

(a) Region 1: Migration energies of a single point defect in the far-field

(the predominant situation in the beginning of the dynamics) should

be obtained from elasticity calculations. Those calculations are very

fast: running on a single CPU, about one million carbon-dislocation

binding energies, subsequently used in Eq. (3.7) to calculate the energy

barriers, can be obtained in less than one minute.

(b) Region 2: At a given carbon-dislocation separation (according to

a user-defined threshold), atomistic simulations should be employed

rather than elasticity for the sake of accuracy. Atomistic simulations

of a few thousands sites will usually last one or two months running

on a medium-sized cluster built with today’s technology CPUs.

2. Region 3: Additionally, an on-the-fly approach to obtain saddle point en-

ergies as the AKMC simulation runs has to be employed in the dislocation

core, where lattice is too distorted. Moreover, in this region, two or more

carbon atoms are expected to interact with each other as carbon concen-

tration increases. A method such as ART [Barkema 1996, Cancès 2009] or

its simplification presented in Chapter 1 (TaR) can be used to build the

connectivity between neighboring states and then a method such as NEB

(or, even better, CI-NEB) can be used to obtain saddle point energies. An

example of on-the-fly AKMC simulations (vacancy diffusion in silicon) is

presented by F. El-Mellouhi and co-workers in Ref. [El-Mellouhi 2008].
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Figure 3.10: The AKMC simulation box is divided into three different regions. In
the far-field, the energy barriers are calculated by anisotropic elasticity theory. At
some carbon-dislocation separation, where anisotropic elasticity theory does not
give accurate results, atomistic simulations have to be employed for this purpose.
In the dislocation core, where the crystal is too distorted and the carbon atoms are
expected to strongly interact with each other as carbon concentration increases,
a method such as NEB is more appropriate. Periodic boundary conditions can
be enforced in the far-field, where carbon-dislocation interaction is negligible.
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Chapter 4

Pipe diffusion

Abstract

The behavior of a single carbon atom in the tight channel surrounding an edge

or a screw dislocation in α-iron has been simulated by atomistic kinetic Monte

Carlo. In these simulations, pipe diffusion has been observed in the core of an

edge dislocation at T ≥ 400 K and in the core of a screw dislocation at T ≥ 750 K.

Below these temperatures, instead of diffusing freely in the dislocation channel,

the carbon atom has been seen to remain performing back and forth jumps at

high frequencies between a few sites separated by low energy barriers. This

behavior has also been observed in molecular dynamics simulations. The effective

diffusion coefficient for carbon migration in the dislocation pipe calculated from

the AKMC-generated carbon trajectories is about two orders of magnitude larger

than the diffusion coefficient in the bulk. The effective activation energies in the

core of an edge or a screw dislocation have also been calculated: 0.670 eV and

0.738 eV, respectively.
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4.1 Introduction

The disordered core region of dislocations has long been assumed to be a chan-

nel through which fast unidimensional diffusion takes place. In a classical work,

Love coined the term “pipe diffusion” for it, in use since then [Love 1964]. Pipe

diffusion is expected to play a role as important as bulk diffusion in the aging of

materials. For instance, since the vicinity of a dislocation is an ideal environment

for the nucleation of precipitates in the latest stages of the aging process, the dis-

location core itself could act as a fast route through which impurities travel and

end up feeding a growing precipitate particle situated at some point along the dis-

location line. Pipe diffusion has been also pointed out as the dominant mechanism

in the dynamic strain aging of metals [Kalk 1995, Ling 1993, Picu 2004], which

results in the Portevin-LeChatelier effect [Mesarovic 1995]. According to this in-

terpretation of DSA, impurities in the atmospheres surrounding dislocations in a

forest migrate to a mobile dislocation temporarily arrested by the forest.

Despite the fact that pipe diffusion has attracted so much attention because of

its scientific and technological implications, direct experimental observations at

the atomic scale still are scarce. Legros and co-workers, in a recent groundbreak-

ing experiment [Legros 2008], were able to carry out real-time observation via in

situ transmission electron microscopy (TEM) of silicon diffusion through a single

dislocation connecting two silicon precipitates of different sizes in an aluminum

thin film (see Fig. 4.1) for temperatures ranging from 623 K to 723 K. In the in-

terpretation of the experimental findings, Legros and co-workers have concluded

that the dislocation pipe does act as a high-diffusivity channel, with an effective

diffusion coefficient many orders of magnitude higher (and an effective activation

energy 20% smaller) than in the bulk. The pipe cross section used in the calcu-

lation of diffusivity was chosen as a disk with radius equal to one Burgers vector

length. This choice was based on the computational work reported by Picu and

Zhang on the pipe diffusion of a manganese atom in aluminium [Picu 2004] and

is not free of controversy. Thus far, the actual pipe diffusion mechanism has not

been established either experimentally or theoretically.

From a theoretical/computational point of view, pipe diffusion in a variety of

materials has been investigated preferentially by molecular dynamics simulations

[Huang 1989, Tapasa 2007, Purja 2009, Zhang 2010a, Zhang 2010b]. These works

provided important insights into this intriguing phenomenon, but none of them

appear to reveal actual mass transport along the dislocation pipe, which is in

contradiction with the dislocation acting as a fast diffusion channel. Tapasa and

co-workers, for instance, performed MD simulations at T = 600, 800, and 1200 K
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Figure 4.1: In situ TEM observation of precipitate dissolution through a disloca-
tion at T=623 K. P1 to P5 are Si nanoprecipitates, and d1 and d2 are dislocation
segments. Only P1 dissolves abnormally fast, because d1 acts as a short circuit
for diffusion. Figure taken from Ref. [Legros 2008].
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[Tapasa 2007]. They verified that a carbon atom trapped by an edge dislocation

in bcc iron jumps back and forth in the core (i.e., no actual diffusion along the

line is observed). One of the principal conclusions drawn from the results of

Ref. [Tapasa 2007] is that mass transport along the line of an edge dislocation

should only occur if the line itself moves. Furthermore, additional interpretation

of the results indicates that pipe diffusion should be strongly dependent on the

dislocation orientation. In this chapter, we report a study based on AKMC

simulations, which is still underway, on the behavior of a carbon atom in the core

of an edge and a screw dislocation in bcc iron.

4.2 Energy calculations

4.2.1 Energy minima

Molecular statics simulations were carried out with LAMMPS to obtain the en-

ergy minima in the volume defined ad hoc as the core region in Chapter 2 (i.e., a

cylinder of radius 4b ≈ 1 nm around the dislocation line). The simulation boxes

employed in molecular statics simulations consisted of cylinders of radius 7.5 nm

(half the radius of the simulation boxes depicted in Fig. 2.4) with the dislocation

line as the axis. Following the same simulation protocol reported in Chapter 2,

the iron atoms in a 2 nm thick outer layer were kept fixed, so as to permanently

represent the dislocation strain field in the far-field. Periodic boundary conditions

were applied only along the dislocation line. The dislocations were assumed to

be straight and immobile in the center of the simulation box.

Outside the core region, the bcc iron matrix is only slightly distorted by the

strain field of a dislocation. Consequently, it was just necessary to implement

a simple algorithm to identify the interstitial positions (octahedral sites) that

corresponded to the energy minima. In the core region, particularly near the dis-

location line, the lattice is too distorted and it is not trivial to guess the location

of an energy minimum thereby. Our approach to handle this problem was the eas-

iest to implement: every midpoint between two neighboring iron atoms was taken

as a position that might accommodate a carbon atom. For each interstitial posi-

tion candidate, a carbon atom was inserted there and geometry optimization was

performed with the conjugate gradient algorithm. As one should expect, many of

these initial positions revealed to be unstable after geometry optimization. In the

volume of interest, we were able to identify about 800 stable interstitial positions

per nanometer of dislocation for both dislocation types.

The energetically stable positions where a carbon atom can be found in the re-

72



Pipe diffusion

Figure 4.2: Energy minimum positions that can be occupied by a carbon atom
in the region defined as the core of an edge and a screw dislocation (R ≤ 4b ≈ 1
nm). Blue (red) balls represent positive (negative) carbon-dislocation binding
energies. The ball sizes are proportional to the binding energies. The dislocation
lines (in the center) are perpendicular to the plane of the page.

gion defined as the dislocation core are represented in Fig. 4.2. Carbon-dislocation

binding energies referring to about 34% (edge) and 52% (screw) of these positions

lie in the interval (−0.10, 0.10) eV. The largest carbon-dislocation binding energy

was found when the carbon atom occupies some positions in the glide plane of

an edge dislocation: 0.65 eV. The largest binding energy of a carbon atom to a

screw dislocation (0.41 eV) was about 40% smaller than to an edge dislocation,

in agreement with previous work using the same EAM potential [Clouet 2008].

Note that the maximum carbon-dislocation binding energy estimated by anelas-

tic measurements (either Snoek or cold-work damping peak) ranges from 0.45

eV to 0.75 eV (the dislocation types are not identified in these experiments)

[K. Kamber 1961, Henderson 1972]. For an edge dislocation, the positions with

both the largest and the smallest (up to -0.81 eV) carbon-dislocation binding en-

ergies are distributed on the glide plane and on the planes just above and below it.

For a screw dislocation, one can see that the positions with the most significant

binding energies form a triangular feature around the line defect. The smallest

binding energy of a carbon atom to a screw dislocation (-0.58 eV) corresponds to

the position that is the closest to the dislocation line.

73



Pipe diffusion

4.2.2 Saddle points

As it has been seen in Chapter 2 (Fig. 2.7), even if the strain due to the line

defects changes the energy barrier height, the minimum energy paths for carbon

migration resemble the minimum energy path in the non-strained iron matrix.

Therefore, we assumed that the tetrahedral site remained the saddle point un-

der the low-to-moderate strain condition outside the dislocation core. However,

when the carbon atom falls into the dislocation core, the lattice distortion is

likely to strongly affect many of the minimum energy paths that can be followed

by the interstitial atom. A more sophisticated method to estimate the saddle

points becomes necessary in this situation. In this work, we performed CI-NEB

simulations (as implemented by the LAMMPS code) for such purpose.

Before obtaining the minimum energy paths and the corresponding saddle

points with CI-NEB, a list of first nearest neighbors had to be built. A problem

that we had to face was to determine whether two energy minima were first

nearest neighbors or not. Initially, a criterion based on the distance between two

energy minima (≤ a0/2+ε, where a0 is the lattice parameter and ε = 0.01 nm was

an arbitrary tolerance) was used. After applying this criterion, we verified that

there were energy minima with less than four first nearest neighbors; indeed,

some had no first nearest neighbor. To search for the first nearest neighbors

of these energy minima, a simplification of the ART method [Barkema 1996,

Cancès 2009], namely, the TaR method described in Chapter 1, was employed.

A total of 12 attempts were performed searching for a maximum of 6 nearest

neighbors per energy minimum. The TaR method allowed to establish links

between two known energy minima and also to find a few unknown energy minima

in the dislocation vicinity. In the subsequent CI-NEB simulations, every two

neighboring energy minima were connected by 7 intermediate images built by

interpolation of the atomic positions. Adjacent images, in turn, were coupled

to each other by a spring with a spring constant k of 10 eV/nm. This chain of

replicas was relaxed by damped molecular dynamics.

Fig. 4.3 shows the distribution of NEB-calculated energy barriers in the re-

gions that have been defined as the cores of an edge and a screw dislocation. The

lowest energy barriers found in these volumes were 0.14 eV (edge) and 0.19 eV

(screw), therefore much lower than the energy barrier for carbon migration in

the non-strained iron matrix (0.816 eV). On the other hand, the highest energy

barriers were as high as 1.55 eV (edge) and 1.14 eV (screw).
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Figure 4.3: Energy barrier distribution in the regions defined as the core (R <
4b ≈ 1 nm) of an edge and a screw dislocation.

4.3 Simulating carbon dynamics in the disloca-

tion core

4.3.1 Atomistic kinetic Monte Carlo simulations

A first round of AKMC simulations using the NEB-calculated energy barriers

and the corresponding transitions were performed where, for every simulated

temperature (300–900 K), 1,000 runs were carried out. In every run, the carbon

atom was placed in the first shell (R < b) surrounding the dislocation line and

allowed to jump up to 100,000 times. Note that, for both dislocation types, the

first shell contained the largest carbon-dislocation binding energies and the lowest

energy barriers for carbon migration.

In these simulations, actual diffusion along the dislocation line is observed

only at T ≥ 400 K (edge) and T ≥ 750 K (screw). By analyzing the simulated

carbon trajectories, we notice that below these temperatures the carbon atom

performs fast back and forth jumps within short circuits made of neighboring

sites separated by low energy barriers: 0.33 eV or 0.42 eV (edge) and about

0.20 eV (screw). The sites belonging to this short circuits are enumerated and

represented by spheres in Fig. 4.4. Taken together, they can be seen as a potential

energy “superbasin”. The energy barriers to escape the superbasins are 0.55 eV

(edge) and 0.81 eV (screw).

Obviously, pipe diffusion is also expected to occur at low temperatures.

75



Pipe diffusion

Figure 4.4: Minimum energy positions (wireframe nodes and spheres) where a
carbon atom can be found in the first shell (R ≤ b) surrounding the disloca-
tion lines. Spheres represent sites that taken together form a superbasin where
the carbon atom is trapped. Different colors account for the carbon-dislocation
binding energy: 0.6–0.7 eV (green); 0.4–0.5 eV (blue); and 0.3–0.4 eV (black).
Positions with negative binding energies are not shown. A and B are the sites
imediately outside the superbasin. Maximum carbon-dislocation binding energy
is 0.65 (edge) and 0.41 eV (screw).

Our AKMC implementation was not able to simulate pipe diffusion at low

temperatures because it is affected by the low barrier problem mentioned by

Ref. [Voter 2002]. It should be stressed that the existence of low barriers is not

a problem in its own right. For instance, if two states i and j are such that

Em
i→j , Em

j→i, once the system falls into state j coming from state i, it is very

unlikely that the system will perform the inverse move. On the other hand, if

Em
i→j ≈ Em

j→i and both energy barriers are much lower than the energy barriers

to escape to other states, the system will be found performing thousands of fast

transitions i ! j in AKMC simulations, and diffusion is unlikely to be observed.

The time scale that can be achieved by AKMC simulations also is strongly af-

fected. As one can see in Fig. 4.5, the maximum simulated physical time in the

core is very short compared to the maximum simulated physical time outside the

core. Indeed, at room temperature, it is about ten orders of magnitude shorter.

Unfortunately, for the moment, our simple AKMC implementation is not able to

handle the low energy barrier problem properly.

Next we carried out much longer AKMC simulations (up to 10,000,000 steps)

only for temperatures where pipe diffusion was expected to be observed with

Algorithm 1.1. Examples of these long AKMC-generated trajectories can be seen

in Figs. 4.6 and 4.7. It is clear from these figures that diffusion is restricted to the

vicinity of the dislocation line, as one should expect if pipe diffusion is occurring.

From the carbon trajectories thus simulated, we calculated the mean squared
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Figure 4.5: Maximum physical time achieved in individual AKMC simulations
(up to 100,000 AKMC steps) as function of temperature.

displacement 〈(z(t))2〉 along the dislocation line. In one dimension, the Einstein

formula for particle diffusion is:

D =
〈(z(t))2〉

2t
(4.1)

The effective pipe diffusion coefficient D in the core of an edge or a screw dis-

location is just the slope of 〈(z(t))2〉, which, at large t, can be approximated to

a straight line. Fig. 4.8 shows a plot of the pipe diffusion coefficients as func-

tion of the inverse of the temperature compared to the isotropic bulk diffusion

coefficient (also calculated from AKMC simulations). These results are in agree-

ment with the assumption accepted for a long time that pipe diffusion is faster

than bulk diffusion (in our case, by about two orders of magnitude). From the

slope of D(1/T ), the effective activation energy Em
eff for pipe diffusion can be

readily calculated. Both Em
eff and the pre-exponential factor D0 are presented

in Table 4.1 and can be compared to the values for bulk diffusion. The effective

activation energies Em
eff for pipe diffusion are about 20% (edge) and 5% (screw)

lower than the bulk value, while D0 for both dislocation types is about two orders

of magnitude larger.

As the last point of our analysis, although we have obviously focused on

the component of carbon trajectories along the dislocation line, it is worthwhile

to mention that in our AKMC simulations pipe diffusion was not restricted to

the first shell (R < b) around the dislocation line: depending on the simulated
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Figure 4.6: Plot of an AKMC-generated carbon trajectory (10,000,000 carbon
jumps) at T = 750 K in the region defined as the core (R < 4b ≈ 1 nm) of
an edge dislocation. It is straightforward to see that the trajectory is quasi-
unidimensional, spreading in the [121] direction which is parallel to the dislocation
line.

D0 (m2/s) Em
eff (eV)

Bulk 1.3 × 10−7 0.816
Edge 9.9 × 10−6 0.670
Screw 1.0 × 10−5 0.738

Table 4.1: Pre-exponential factor D0 and effective activation energy Em
eff for

carbon diffusion in the bulk and in the core (R < 4b ≈ 1 nm) of an edge or a
screw dislocation.

78



Pipe diffusion

Figure 4.7: Plot of an AKMC-generated carbon trajectory (10,000,000 carbon
jumps) at T = 850 K in the region defined as the core (R < 4b ≈ 1 nm) of
a screw dislocation. It is straightforward to see that the trajectory is quasi-
unidimensional, spreading in the [111] direction which is parallel to the dislocation
line.
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Figure 4.8: Carbon diffusion coefficient in bulk α-iron and in the core (R < 4b ≈ 1
nm) of an edge or screw dislocation, calculated from AKMC simulations.
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temperature, the carbon atom visited positions at R > 3b. This is not surprising

at all: one should expect that the width of the dislocation pipe increases with

temperature, up to the limit where the carbon atom can move away from the

line defect. Despite the fact that the host material (aluminium) and the diffusing

atom (silicon) in the experimental study reported by Ref. [Legros 2008] are not

the same as in this work, our results suggest that the pipe radius may be larger

than b, which is the value that Legros and co-workers used in the diffusivity

calculation.

It should be mentioned that the analysis of pipe diffusion in the context of

this work is hindered, first, by the fact that the current AKMC algorithm is not

able to treat the low energy barrier problem properly at low temperatures and,

second, by the fact that at high temperatures the carbon-dislocation complex

easily dissociates and the carbon atom diffuses back to the bulk. Therefore, the

temperature range within which the data for diffusivity presented in Fig. 4.8 was

collected was somewhat limited (400–800 K for edge and 750–850 K for screw).

4.3.2 Molecular dynamics simulations

In order to perform an additional check, MD simulations of a single carbon

atom in the core of an edge and a screw dislocation have been carried out with

LAMMPS using the same simulation boxes as in molecular statics simulations.

A time step of 10−15 s was used for the integration of the equations of motion.

The total simulated time was 11 ns, with 1 ns of equilibration. For both dislo-

cation types, the carbon atom was initially left in the first shell surrounding the

dislocation line (R < b). For the time being, simulations have been performed at

T = 600 K (edge and screw) and T = 800 K (edge only). In these simulations,

the temperature remained constant by means of the coupling to a Nosé-Hoover

thermostat [Nosé 1984, Hoover 1985].

A few snapshots of a carbon atom in the core of an edge dislocation at T = 600

K can be seen in Fig. 4.9. In this simulation, the carbon atom has been found

performing back and forth jumps restricted most of the time to the glide plane of

the edge dislocation. Only six jumps to different dislocation segments have been

observed during the whole simulated time. The span of the carbon trajectory

along the dislocation line (i.e., the difference between the maximum and the

minimum z-coordinates of the positions visited by the carbon atom) was 1.6 nm.

On the other hand, at T = 800 K, pipe diffusion is readily observed. Therefore,

our results led to a different conclusion from Tapasa et al, which stated that no

actual diffusion along the pipe of an edge dislocation was observed in the course
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of their MD simulations [Tapasa 2007], even at temperatures as high as 1200

K. It should be mentioned that Ref. [Tapasa 2007] employed a different Fe-C

interatomic potential [Johnson 1964].

In Fig. 4.10, one can see three snapshots taken at approximately 1, 4, and 9

ns for a carbon atom in the core of a screw dislocation. These snapshots show

the carbon atom occupying the positions that correspond to the sites represented

in Fig. 4.4. As it has been previously observed in AKMC simulations, the carbon

atom also performs hops at high frequencies within what seems to be a trap.

No actual diffusion is seen for the whole simulated time, which one should expect

taking into account that the MD-simulated time is much shorter than the AKMC-

simulated time at the same temperature. Indeed, according to the AKMC results,

pipe diffusion in the core of a screw dislocation, in the typical time scale of MD

simulations (ns), is unlikely to be observed at temperatures lower than 750 K.

As a preliminary conclusion, MD simulations revealed the same behavior pre-

dicted by AKMC simulations, that is, the carbon atom jumps back and forth in

the dislocation core. In the core of a screw dislocation, MD simulations at higher

temperatures are necessary to give the carbon atom enough energy to escape the

superbasin.

4.4 Analysis of the minimum energy paths in

the dislocation core

4.4.1 Carbon in the core of an edge dislocation

Figs. 4.11 to 4.15 show the plots of the minimum energy paths in the core of an

edge dislocation that refer to the superbasin seen in Fig. 4.4. The geometries of

both energy minima and saddle points are also represented. When the carbon

atom lies in an energy minimum, it occupies nearly the center of an irregular

(distorted) octahedron. The distance to the surrounding iron atoms falls within

the 0.187–0.198 nm range, significantly larger than the carbon-iron distance in

an octahedral site in bulk α-iron (0.179 nm). Considering that more space is

available, carbon solvation is favored in the core of an edge dislocation and thus

carbon-dislocation binding energies are the largest (ranging from 0.61 eV to 0.65

eV), in agreement with previous simulations carried out with our Fe-C potential

[Clouet 2008]. The lowest energy barriers (0.33 eV) are observed for the transi-

tions depicted in Figs. 4.12 and 4.14. At the saddle point, the carbon atom is

found in the center of a distorted tetrahedron, that is, these transitions are sim-
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Figure 4.9: Snapshots of molecular dynamics simulations at T = 600 K for a
carbon atom (white ball) in the core (R < 4b ≈ 1 nm) of an edge dislocation.
The solid arrows point to the carbon atom, whereas the dashed arrows show the
position and orientation of the dislocation line.
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Figure 4.10: Snapshots of molecular dynamics simulations at T = 600 K for a
carbon atom (white ball) in the core (R < 4b ≈ 1 nm) of a screw dislocation.
The solid arrows point to the carbon atom. The dislocation line (in the center)
is perpendicular to the plane of the page.

ilar to the typical octahedral-to-octahedral transitions in non-strained bcc iron.

For the transitions shown in Fig. 4.14, in turn, the tetrahedral site is rather a

shallow energy minimum in the middle of the path. There are two equivalent

saddle points in this path, where the carbon atom lies near the face of a tetra-

hedron, which corresponds to the center of a distorted triangular prism. The

carbon atom can enter/leave the superbasin by overcoming the barriers shown in

Figs. 4.11 and 4.15. In these plots, A and B are the energy minima connected

to the two extremities of the superbasin. One can see that the picture is quite

similar to what is seen in Fig. 4.14, except that the two peaks are no longer

equivalent (the highest peak yields a barrier of 0.55 eV to escape the superbasin).

Clouet et al have reported that at short carbon-dislocation separations (R ≈
3b) our interatomic potential predicts that the force on the dislocation due to

the carbon atom is so strong that makes the line defect leave its initial position

and move towards the solute [Clouet 2008]. Tapasa et al, in turn, have found

in their simulations, performed with the Fe-C potential developed by Johnson

et al [Johnson 1964], that carbon jumps in the core of an edge dislocation are

accompanied by dislocation jumps [Tapasa 2007]. Thus it is worthwhile to check

also the behavior of the dislocation line in our simulations as the carbon atom

performs jumps from/to the sites in the superbasin and out of it. It should be

stressed that when the carbon atom jumps along the pipe, it does not move

parallel to the dislocation line. Its trajectory rather makes an angle of about
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Figure 4.11: Minimum energy path connecting a state outside the superbasin with
the state 1 in a superbasin in the core (R < 4b ≈ 1 nm) of an edge dislocation,
depicted in Fig. 4.4. The carbon atom is represented by a big white ball and
the iron atoms by small green balls. The geometries are oriented so as to make
visualization easier.
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Figure 4.12: Minimum energy path connecting the state 1 to the state 2 in a
superbasin in the core (R < 4b ≈ 1 nm) of an edge dislocation, depicted in
Fig. 4.4. The carbon atom is represented by a big white ball and the iron atoms
by small green balls. The geometries are oriented so as to make visualization
easier.
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Figure 4.13: Minimum energy path connecting the state 2 to the state 3 in a
superbasin in the core (R < 4b ≈ 1 nm) of an edge dislocation, depicted in
Fig. 4.4. The carbon atom is represented by a big white ball and the iron atoms
by small green balls. The geometries are oriented so as to make visualization
easier.
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Figure 4.14: Minimum energy path connecting the state 3 to the state 4 in a
superbasin in the core (R < 4b ≈ 1 nm) of an edge dislocation, depicted in
Fig. 4.4. The carbon atom is represented by a big white ball and the iron atoms
by small green balls. The geometries are oriented so as to make visualization
easier.
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Figure 4.15: Minimum energy path connecting the state 4 in a superbasin in the
core (R < 4b ≈ 1 nm) of an edge dislocation, depicted in Fig. 4.4, with a state
outside the superbasin. The carbon atom is represented by a big white ball and
the iron atoms by small green balls. The geometries are oriented so as to make
visualization easier.
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Figure 4.16: Dislocation line position (XD) as a function of carbon position (XC)
in the region defined as the core (R < 4b ≈ 1 nm) of an edge dislocation. The
reference is the initial position of the dislocation line (in red in the inset).

70◦ with the Burgers vector direction, as one can see in Fig. 4.4. In other words,

as the carbon atom jumps along the dislocation pipe, it also moves along the glide

plane.The position of the dislocation line (XD) as a function of carbon position

in the glide plane of the edge dislocation (XC) can be seen in Fig. 4.16. The

reference is the initial position of the dislocation line. One can see that, as the

carbon atom jumps in the glide plane, the dislocation line itself is displaced from

its initial position and follows the interstitial atom. However, as the dislocation

moves, its strain field is also expected to move. In this case, the fixed boundaries

of the cylindrical simulation box used in molecular statics and molecular dynamics

simulations, which represent the strain field of an edge dislocation in its initial

position, imposes a resistance to dislocation motion. Such a resistance is reflected

in the higher energy barriers shown in Figs. 4.11 and 4.15, which corresponds to

the dislocation line moving more than b away from its initial position.

4.4.2 Carbon in the core of a screw dislocation

A few superbasins were identified in the core of a screw dislocation. One of

them is shown in Fig. 4.4. The positions that a carbon atom can occupy are

in the vertices of a triangle. Other superbasins identified near the line of the

screw dislocation present the same configuration. Figs. 4.17 to 4.19 represent the

minimum energy paths with the geometries corresponding to the energy minima

and the saddle points for the fast transitions within the superbasin as well as
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the lowest energy transition to move the system out of it (site A in Fig. 4.4).

One can see that the jump distances within the superbasin (≈ 0.12 nm) are

much shorter than the jump distance from state 1 to the state A (≈ 0.17 nm).

Regarding the geometry, the carbon atom is nearly the center of a distorted

octahedron in states 1 and 2, and also in state A. These states are energetically

equivalent, i.e., they have the same carbon-dislocation binding energy (Eb = 0.41

eV). Distances to the closest iron atoms lie in the 0.184–0.198 nm range. The

geometry of state 3, in turn, is not the same as the other states, as one can

see in Fig. 4.19. This state is about 50 meV higher in energy than states 1

and 2. At the saddle point between the state A and the state 1, the carbon

atom occupies nearly the center of a distorted tetrahedron. Therefore, such a

transition resembles the typical octahedral-to-octahedral transition in bcc iron.

On the other hand, at the saddle points within the superbasin, the carbon atom

is found nearly the center of a distorted triangular prism. The consequence of

the geometrical differences, particularly evident for the saddle points, is that the

energy barriers for jumps inside the superbasin (0.20–0.24 eV) are much lower

than the lowest energy barrier to jump out of it (0.81 eV, which is close to the

value for carbon diffusion in non-strained bcc iron). Consequently, particularly

at low temperatures, the probability to escape the superbasin is very low.

4.5 Overview

This chapter presented atomistic simulations of carbon behavior in the core of

an edge and a screw dislocation in α-Fe. The energy barriers in the core region

(defined ad hoc as a cylinder of radius 4b surrounding the dislocation line) of both

dislocation types have been obtained by the CI-NEB method as implemented in

LAMMPS. AKMC simulations fed with these energy barriers were performed

for a wide temperature range (300–900 K). Actual pipe diffusion was observed

only at T ≥ 400 K (edge) and T ≥ 750 K (screw). Below these temperatures,

the carbon atom was seen to jump back and forth within a short circuit made

of states separated by low energy barriers. The same behavior was confirmed

by MD simulations carried out with LAMMPS. Additional AKMC simulations,

which generated long carbon trajectories (up to 10,000,000 steps), allowed us

to calculate, from the slope of the mean squared displacement at large t, the

effective diffusion coefficients for carbon migration in the core of an edge and a

screw dislocation. These diffusion coefficients are about two orders of magnitude

larger than the diffusion coefficient for carbon migration in the bulk. Finally, the
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Figure 4.17: Minimum energy path connecting a state outside the superbasin with
the state 1 in a superbasin in the core (R < 4b ≈ 1 nm) of a screw dislocation,
depicted in Fig. 4.4. The carbon atom is represented by a big white ball and
the iron atoms by small green balls. The geometries are oriented so as to make
visualization easier.
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Figure 4.18: Minimum energy path connecting the state 1 to the state 2 in a
superbasin in the core (R < 4b ≈ 1 nm) of a screw dislocation, depicted in
Fig. 4.4. The carbon atom is represented by a big white ball and the iron atoms
by small green balls. The geometries are oriented so as to make visualization
easier.
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Figure 4.19: Minimum energy path connecting the state 1 to the state 3 in a
superbasin in the core (R < 4b ≈ 1 nm) of a screw dislocation, depicted in
Fig. 4.4. The carbon atom is represented by a big white ball and the iron atoms
by small green balls. The geometries are oriented so as to make visualization
easier.
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effective energy barrier in the dislocation cores was calculated: 0.670 (edge) and

0.738 (screw), about 20% and 5% lower than the energy barrier in the bulk (0.816

eV), respectively.

4.6 Ongoing work

Considering the results of the AKMC simulations presented in this chapter, Al-

gorithm 1.1 does not seem to be appropriate for the simulation of pipe diffusion

in bcc iron at low temperatures. The low barrier problem, which consists of two

or more states separated by energy barriers much lower than the energy barriers

to escape to other states, is a long standing problem in AKMC simulations. To

circumvent it, it is necessary to modify the AKMC algorithm such that the fast

transitions in a superbasin, which do not contribute to diffusion, are handled

separate from the slow transitions, as proposed by Ref. [Puchala 2009]. The im-

plementation of these modifications into the AKMC algorithm is left as future

work.
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Chapter 5

Carbon distribution in the stress

field of a dislocation

Abstract

The vicinity of a dislocation can be divided into binding and anti-binding zones,

where the probability to find a carbon atom is higher or lower than in the matrix,

respectively. These zones overlap in regions where the shear stress predominates

(i.e., all around a screw dislocation and near the glide plane of an edge dislo-

cation). Statistical physics (Fermi-Dirac statistics) was used with the carbon-

dislocation binding energies obtained by atomistic simulations to calculate the

concentration of carbon atoms around an edge or a screw dislocation. The satu-

ration concentration in the dislocation core was estimated by a simple stochastic

algorithm and taken as a upper limit in the carbon distributions. A good agree-

ment between theoretical predictions and the available experimental atom probe

data is also demonstrated.
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5.1 Introduction

In Chapter 2, we presented the simulations of the kinetics of carbon diffusion

to an edge or a screw dislocation under the condition of very low carbon con-

centration, which implies that all arriving carbon atoms are captured within the

dislocation core. We have also seen that at least the earliest stages of Cottrell at-

mosphere formation should be driven only by the bias on carbon diffusion induced

by the presence of the line defect. However, as carbon concentration increases,

the dislocation core is not able to accommodate all segregating interstitials and

the atmosphere grows up outwards from the dislocation core by occupying sites

in the surrounding matrix. Moreover, the relaxation of the dislocation strain

field due to the growing interstitial cloud is likely to change the way the line

defect affects carbon diffusion. In other words, simulating the dynamics of many

carbon atoms in a Cottrell atmosphere is obviously a task much more complex

than following the trajectories of isolated carbon atoms that interact only with

the strain field of a fresh dislocation. For the time being, we focused on obtain-

ing a static distribution of carbon atoms around an edge or a screw dislocation,

which is interesting in its own right and can be achieved with the knowledge of

the carbon-dislocation binding energies already calculated from molecular statics

simulations.

In the next section of this chapter, some experimental results on carbon seg-

regation to dislocations in iron [Wilde 2000, Miller 2003, Miller 2006], obtained

by atom probe, are summarized. Apart from the experimental demonstration

of the existence of Cottrell atmospheres, atom probe also provides information

on the composition, solute concentration, and shape of the atmospheres. The

subsequent section presents the statistical physics approach that we have used to

obtain the equilibrium distribution of carbon atoms around an edge and a screw

dislocation. A static model of a Cottrell atmosphere in equilibrium generated by

such an approach can be seen in the third section. Finally, in the last section,

theoretical results are compared to the experimental atom probe data.

5.2 Atomic scale experimental characterization

of solute segregation to dislocations

The segregation of solute atoms to dislocations is among the most difficult mi-

crostructural features to be characterized in experiments, owing to the small

extent of Cottrell atmospheres and the low dislocation densities. Despite these
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difficulties, three-dimensional atom probe (3DAP) techniques have allowed to suc-

cessfully image Cottrell atmospheres, even if not routinely. Chang demonstrated

carbon segregation to dislocations in low carbon lath martensites by superimpos-

ing field ion micrographs and gated carbon images taken in the imaging atom

probe [Chang 1985]. Indeed, Chang’s doctoral thesis, defended in 1985 at Oxford

University, provides, to our knowledge, the first direct observation of a carbon

Cottrell atmosphere in iron, about 35 years after the pioneering Cottrell and

Bilby’s work. However, due to the limitations of the experimental apparatus,

Chang’s work was not fully quantitative: not all carbon atoms were detected and

carbon concentration with respect to iron could not be properly recorded.

Wilde and co-authors later extended Chang’s work and mapped a 3D distri-

bution of carbon atoms around a dislocation with energy-compensated optical

position sensitive atom probe (ECOPoSAP) in conjunction with field ion mi-

croscopy (FIM) [Wilde 2000]. Such a mapping for a Fe-0.85at%C (low carbon)

martensite specimen aged at room temperature for over 24 hours can be seen

in Fig. 5.1 and also compared to a dislocation free region of same size (width

of 10 ± 1.5 nm). Solute enhancement in the vicinity of the line defect is clearly

demonstrated. The carbon atoms form a disperse cloud that extends about 7

nm outwards from the dislocation core. A maximum carbon concentration of ap-

proximately 8 at% was observed, with about 21 carbon atoms per atomic plane

along the dislocation line. This corresponds to 105 carbon atoms per nanome-

ter of dislocation. The shape of the solute enhanced region depicted in Fig. 5.2,

which shows three lobes separated by 120◦, has led authors of Ref. [Wilde 2000]

to conclude that it was likely to be a screw dislocation, which is also the dislo-

cation type most commonly found in lath martensites [Sandvik 1983]. However,

as Wilde and co-workers recognized, it is not a trivial task to characterize the

dislocation type in FIM and, as it has been pointed out by Miller [Miller 2006],

except in a few special cases where the closure failure of the Burgers circuit is

visible in the atom maps (for instance, in Ref. [Blavette 1999]), it is not normally

possible to distinguish neither the dislocation type nor the precise location of the

dislocation line from the atom probe data. Moreover, even in these special cases,

the applied electric field imposes a mechanical stress on the specimen that may

alter the precise relationship of the dislocation to the atmosphere.

Refs. [Miller 2003, Miller 2006], in turn, presented a three-dimensional atom

probe (3DAP) tomography characterization of a mechanically-alloyed, oxide-

dispersion-strengthened (MA/ODS) ferritic alloy. The composition of the speci-

men can be seen in Table 5.1. Enhanced zones around dislocations were defined
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Figure 5.1: Results of ECOPoSAP analysis carried out directly over a dislocation
(a-e) and over a dislocation free region (f-j) in a Fe-0.85at%C martensite specimen.
Field ion micrographs of the areas of analysis, (a) and (f), were taken at 12 kV in
Ne at T = 50 K. The analyzed volumes are divided into four successive sections
of width 10 ± 1.5 nm, (b-e) and (g-j) respectively, each containing exactly five
atomic planes. The initial position of the dislocation is shown by the dark circles
in (a) and (b). Figure taken from Ref. [Wilde 2000].
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Figure 5.2: Top view plot (4at%C isosurfaces) of a Cottrell atmosphere obtained
by ECOPoSAP. The dislocation position is marked by a circle. The width of the
analyzed region is 10 ± 1.5 nm and the depth is ≈ 4 nm. Figure adapted from
Ref. [Wilde 2000].

according to the envelope method described in details in Ref. [Marquis 2010].

Shortly, this method is implemented by identifying the solute atoms in the fea-

ture of interest (e.g., a precipitate particle or the vicinity of a dislocation) and

then superimposing a fine 3D grid over the data. In order to identify such atoms,

a distance criterion is employed: two atoms separated by a distance d below a

certain value dmax (typically ranging from 0.4 nm to 0.6 nm) are considered to

be part of an enriched zone; otherwise, they are considered as atoms in solution

in the host matrix. A grid size of 0.1–0.2 nm is usually chosen. The extent of

the feature is defined by the grid cells that contain solute atoms separated by

d ≤ dmax and also by the grid cells that, even eventually empty, are encompassed

by the enriched ones. From Table 5.1, it is straightforward to verify that the

concentration of all alloying elements increased in the vicinity of the line defect,

although for some of them (for instance, nitrogen) the enhancement is almost

negligible. Carbon concentration has been seen to be enhanced by a factor of 7.7.

5.3 Modeling approach

5.3.1 Statistical physics

The problem of finding the average distribution of solute atoms in a Cottrell

atmosphere under the condition of thermodynamic equilibrium has been ad-
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Element Matrix at.% Dislocation at.% Enrichment
Cr 12.3 15.9±0.16 1.3
W 0.71 1.21±0.05 1.7
Ti 0.08 0.44±0.03 5.5
Y 0.01 0.16±0.02 16.0
O 0.11 0.53±0.03 4.8
C 0.18 1.38±0.05 7.7
B 0.05 0.44±0.03 8.8
N 0.15 0.17±0.02 1.1

Table 5.1: Solute concentration in the matrix of a MA/ODS alloy obtained by
atom probe tomography. The balance is iron. Taken from Ref. [Miller 2003].

dressed since such atmospheres were firstly proposed as an explanation of the

SSA phenomenon [Cottrell 1949]. For this purpose, Cottrell and Bilby employed

the Maxwell-Boltzmann formula around an edge dislocation:

ni

n0
= exp

(
Eb

i

kT

)
(5.1)

In Eq. (5.1), ni is the number of solute atoms occupying sites with solute-

dislocation binding energy Eb
i and n0 is the background (matrix) solute concen-

tration. Cottrell and Bilby verified that this distribution holds for dilute carbon

concentrations in the far-field, where Eb
i is small. However, it fails near the dis-

location core (R < 1 nm), where Eb
i assumes the largest values. In this region

and at room temperature, Maxwell-Botzmann statistics yields impossibly large

values (in the order of 1011) of the ratio ni/n0. For example, if Ni is the number

of sites with energy Eb
i and ni is the number of occupied sites, it is obvious that

ni must be smaller than Ni, whatever the energy level Eb
i .

In an attempt to provide a more reasonable distribution, taking into account

this saturation effect, Louat proposed the following equation [Louat 1956]:

ni

n0
=

Ni − ni

N0 − n0
exp

(
Eb

i − Eb
0

kT

)
(5.2)

where N0 and n0 are the total number of sites and number of occupied sites,

respectively, of a reference state of energy Eb
0. Louat’s derivation was based on

the following assumptions:

i. the region near a dislocation may be divided into a number of discrete sub-

regions characterized by a unique solute-dislocation binding energy;

ii. each sub-region can be occupied by only one solute atom at a time;
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iii. the interaction between solute atoms in the atmosphere may be neglected.

An important remark made by Beshers is that these assumptions are the same

as the ones on which Fermi-Dirac statistics are based, that is, the problem here

also boils down to how to distribute indistinguishable particles with negligible

mutual interaction in discrete states with a maximum occupancy of one particle

per state [Beshers 1958].

Eq. (5.2) can be readily rearranged as follows:

ni

Ni − ni
=

n0

N0 − n0
exp

(
Eb

i − Eb
0

kT

)
(5.3)

There is a large degeneracy in energy, with the total number of sites with a given

energy being as great as the number of these sites per dislocation unit length

multiplied by the total dislocation length. It is thus more convenient if we express

Eq. (5.3) in terms of the fractional occupancies ni = ni/Ni and n0 = n0/N0:

ni

1 − ni
=

n0

1 − n0
exp

(
Eb

i − Eb
0

kT

)
(5.4)

If we take Eb
0 as the carbon-dislocation binding energy for a carbon atom very far

away from the dislocation, Eb
0 → 0 because the interaction between both defects

is negligible. Then, rearranging the terms of Eq. (5.4) finally yields:

ni =

n0
1 − n0

exp

(
Eb

i
kT

)

1 +
n0

1 − n0
exp

(
Eb

i

kT

) (5.5)

In this case, n0 should be seen as the fractional occupancy of an octahedral site

in non-strained α-Fe and ni is the fractional occupancy of a site corresponding to

an energy minimum in the neighborhood of a dislocation where the carbon atom

interacts with the line defect with a binding energy Eb
i . Taking into account that

0 < ni < 1, ni is also the probability to find a carbon atom at this site at a given

temperature.

5.3.2 Saturation concentration

Even if Louat’s formulation (i.e., Fermi-Dirac statistics) for solute distribution

in a Cottrell atmosphere yields better results than Maxwell-Boltzmann statistics,

it still fails in the vicinity of the dislocation core. As pointed out by Beshers
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[Beshers 1958], in the first shell around a dislocation (R < b), where the largest

carbon-dislocation binding energies are found, Fermi-Dirac statistics gives an oc-

cupancy probability ni larger than 99% at room temperature. This implies three

or four times more carbon atoms than iron atoms in that region, an interesting

feature that was never observed experimentally. It is straightforward to deduce

that the reason behind this result is that the third assumption on which Louat

based the derivation of Eq. (5.2) is not valid when the atmosphere becomes too

dense. Indeed, at a certain concentration level, carbon atoms do interact with

each other when dissolved in the iron matrix, as one can see, for instance, in

Ref. [Sinclair 2010], where ordering of carbon in supersaturated α-iron has been

simulated by molecular dynamics. Depending on their relative positions in the

iron matrix, two neighboring carbon atoms can attract or repel each other with

binding energies of up to 1.50 eV or -1.67 eV, respectively, according to ab initio

calculations [Becquart 2007].

In the following lines, we present a scheme to estimate the saturation concen-

tration in a given volume (a cylinder of radius b around the dislocation line) that

employs a stochastic (Monte Carlo-like) algorithm (Algorithm 5.1) and molecu-

lar statics simulations with the interatomic Fe-C potential used throughout this

work. It is based on an assumption similar to Cochardt’s one [Cochardt 1955]:

the saturation concentration is achieved when an additional carbon atom is no

longer able to reduce the energy of the Fe-C system. To perform the simulations,

a list of minimum energy positions that a carbon atom can occupy inside a cylin-

drical volume of radius b containing an edge or a screw dislocation was built. The

largest carbon-dislocation binding energies are found in this volume, as shown in

Chapter 4. At every MC step, one of these positions not yet occupied by a carbon

atom is chosen at random and a carbon atom is inserted in the corresponding

position in the simulation box employed in molecular statics simulations. Then,

conjugate gradient is carried out with LAMMPS to obtain the total potential en-

ergy of the new configuration. Once knowing the system total potential energy,

the variation of the energy of the Fe-C system when m carbon atoms are found

in the volume of interest is defined as follows:

∆EmC = mEC + Edislo − EmC+dislo (5.6)

In Eq. (5.6), EC = −10.059 eV, as already seen in Chapter 2, is the energy added

by an isolated carbon atom occupying a minimum energy position in α-iron (i.e.,

an octahedral site) according to the EAM potential, Edislo is the total energy of

a simulation box such as the ones depicted in Fig. 2.4, and EmC+dislo is the total
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energy of the same simulation box with m carbon atoms. If ∆EmC > ∆E(m−1)C

then the configuration is accepted and the site that refers to the last added car-

bon atom is considered occupied. Otherwise, the configuration is rejected and

the number of rejected configurations is incremented by one. The MC simula-

tion stops if a user-defined consecutive number of configurations is rejected (i.e.,

we assume that saturation concentration has been achieved). In Algorithm 5.1,

reverse moves (occupied → unoccupied) are not allowed, that is, a carbon atom

can only be added to an empty site during a MC step, but not removed from it

in subsequent moves.

Algorithm 5.1 Algorithm used to estimate the saturation concentration in the
first shell (R < b ≈ 0.25 nm) surrounding a dislocation. For the time being,
reverse moves (occupied → unoccupied) are not allowed.
1: Parameter: maximum number of simulations Nsim;
2: Parameter: maximum number of consecutive rejected configurations Nrej;
3: Load the list of interstitial sites;
4: i = 1;
5: while i ≤ Nsim do
6: Create an empty history file;
7: Create an empty list of blocked sites;
8: m = 0;
9: ∆EmC = 0;

10: j = 0;
11: while j ≤ Nrej do
12: Select a non-blocked site at random in the list of interstitial sites and
13: Add a carbon atom to the corresponding position in the molecular statics

simulation box;
14: Run LAMMPS to obtain the total energies of the new configuration;
15: m = m + 1;
16: Compute ∆EmC (Eq. 5.6);
17: if ∆EmC > ∆E(m−1)C then
18: Accept the new configuration;
19: Add the current site to the list of blocked sites;
20: Save m, the current site index, and ∆mC into the history file;
21: j = 0;
22: else
23: Reject the new configuration;
24: m = m − 1;
25: j = j + 1;
26: end if
27: end while
28: i = i + 1;
29: end while
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Figure 5.3: Graphical description of the approach used in this chapter to model
carbon distribution in a Cottrell atmosphere: the occupancy ni is calculated by
Eq. (5.5) as a function of the carbon-dislocation binding energy Eb

i . If ni > ni,max,
calculated by the Algorithm 5.1, we take ni = ni,max.

As illustrated in Fig. 5.3, the carbon concentrations around dislocations pre-

sented in the next section are calculated by Eq. (5.5), with the additional con-

dition that ni is smaller than the maximum occupancy ni,max obtained by Algo-

rithm 5.1:

ni = min
(
nMC

i,max, n
Eq. (5.5)
i

)
(5.7)

5.4 Modeling carbon distribution in the neigh-

borhood of dislocations

5.4.1 Extent and shape of a Cottrell atmosphere

Given the low solubility of carbon in α-iron, a carbon Cottrell atmosphere, except

very near the dislocation core, still is expected to be very dilute. Indeed, exper-

imental findings suggest that much of the atmosphere is distributed up to a few

nanometers away from the dislocation core [Wilde 2000, Miller 2003, Miller 2006].
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A question that can arise is: how far from the dislocation line a carbon atom still

can be considered bound to it? One answer to this question, based on the bind-

ing energies between both defects, has been proposed by Ref. [Cochardt 1955]: a

Cottrell atmosphere should extend up to the limit in which the carbon-dislocation

binding energy Eb is larger than the thermal energy kT . Beyond it, the disloca-

tion influence on the carbon atom is no longer relevant, since thermal fluctuations

are strong enough to take the interstitial away. On the other hand, if Eb < −kT ,

we have the contrary: the available thermal energy is not sufficient to take the

carbon atom closer to the line defect. Therefore, sites with Eb > kT are “bind-

ing sites” (carbon is more likely to occupy one of these sites than a site in the

non-strained iron matrix) and sites with Eb < −kT are “anti-binding sites” (one

should not expect to find a carbon atom there).

Fig. 5.4 presents the extent and shape of the regions containing the binding

and anti-binding sites for a carbon atom near an edge or a screw dislocation.

The binding energies Eb for a carbon atom occupying energy minima positions in

the neighborhood of the line defects are the ones calculated from the molecular

statics simulations presented in Chapters 2 and 4. Obviously, as one can see, the

extent of the binding and anti-binding zones decreases as temperature increases.

Most of the binding sites around an edge dislocation can be found above the

glide plane, in the crystal half under tension; anti-binding sites, in turn, are

distributed preferentially under the glide plane, in the half under compression.

However, we can discern an overlap zone near the glide plane. The atmosphere

width, at T = 300 K, is of approximately 15 nm, with a height of approximately

6 nm. At T = 600 K, both the width and the height of the Cottrell atmosphere

decrease by a factor of 0.5.

For a screw dislocation, binding and anti-binding sites are radially distributed

around the dislocation core, rotated by 60◦ with respect to each other. At T = 300

K, the atmosphere radius is of approximately 4 nm, and half this value at T = 600

K. Overlap between binding and anti-binding zones can also be seen here and this

feature can be easily explained. Outside the core of a screw dislocation, the stress

field is predominantly shear, and near the glide plane of an edge dislocation, where

the same overlap is observed, the most important component of the stress field is

σxy. Differently from volumes where normal stress predominates (e.g., above and

below the core of an edge dislocation), where the size of the locus that may be

occupied by the carbon atom determines the binding energy with the dislocation,

in volumes where the predominant stress is shear we may find interstitial positions

with positive and negative binding energies mixed, since the binding energies in
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Figure 5.4: Extent and shape of the binding and anti-binding zones around an
edge (left) and a screw (right) dislocation defined according to the criterion of
Ref. [Cochardt 1955] at T = 300 K and T = 600 K. The dotted line represents
the glide plane.

this case depend on the orientation of the tetragonal distortion imposed by the

interstitial atom.

5.4.2 Carbon concentration in a Cottrell atmosphere

Before calculating carbon distributions with Eq. (5.5), the MC code outlined in

Algorithm 5.1 was used to estimate the saturation concentration within the first

shell (R < b ≈ 0.25 nm) around an edge or a screw dislocation. A total of

100 simulations were performed for each dislocation type. In every simulation,

the stop condition was fulfilled after 25 consecutive rejected configurations. On

average, the saturation concentration occurs when the occupancy probability is
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equal to 17% (edge) and 16% (screw). These values correspond, in our simulation

boxes, to 31± 4at%C (edge) and 21± 3at%C (screw). They still are much larger

than the maximum carbon concentration in the vicinity of a screw dislocation ex-

perimentally found (8±2at%C [Wilde 2000]), but they are much more reasonable

than what is given by Fermi-Dirac statistics alone.

Taking into account the saturation concentration calculated previously as the

maximum occupancy (i.e., the maximum value of ni was 0.17 near an edge dislo-

cation and 0.16 near a screw dislocation), the carbon distributions were generated

by Eq. (5.5) from the carbon-dislocation binding energies obtained by molecular

statics simulations presented in Chapters 2 and 4. Fig. 5.5 shows the equilib-

rium carbon concentration in the stress field of an edge (left) or a screw (right)

dislocation at T = 300 K and T = 600 K. The background occupancy n0 corre-

sponded in this case to a carbon concentration in the matrix of 0.18at%C, such

as in Refs. [Miller 2003, Miller 2006]. A larger value of n0, corresponding to a

solute concentration in the iron matrix of 0.85at%C [Wilde 2000], was used to

generate the carbon distributions shown in Fig. 5.6. As expected, the larger the

carbon content initially in solid solution, the more dense the Cottrell atmosphere

decorating a dislocation will be (according to Eq. (5.5)). In any case, it is evident

by visual inspection that, apart from the core, the Cottrell atmosphere around

a screw dislocation is much more dilute than the atmosphere in the zone under

tension above the core of an edge dislocation. On the other hand, right below

the core of an edge dislocation, where the compressive stress is maximum, the

probability to find a carbon atom is for all practical ends equal to zero.

In addition, the carbon positions in a Cottrell atmosphere at a given temper-

ature can be randomly generated taking into account the occupancy probabilities

calculated above, being used, for example, as the initial coordinates for atomistic

simulations. To provide an example, Fig. 5.7 shows the carbon atoms forming a

Cottrell atmosphere surrounding a screw dislocation at T = 300 K, considering

a background concentration of 0.18%C.

5.5 Comparison to experimental data

Comparing our theoretical predictions to the experimental data available in the

literature is not as trivial as it seems to be a priori. In the theoretical corner, we

have a statistical distribution and the extent of the atmospheres is usually defined

according to a quantitative criterion based on the carbon-dislocation binding en-

ergies, as shown in Fig. 5.4. On the other hand, one should expect that carbon

107



Carbon distribution in the stress field of a dislocation

Figure 5.5: Mapping of the fractional occupancy of interstitial sites around an
edge (left) and a screw (right) dislocation at T = 300 K and T = 600 K for
Fe-0.18at%C, such as in Ref. [Miller 2003, Miller 2006].
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Figure 5.6: Mapping of the fractional occupancy of interstitial sites around an
edge (left) and a screw (right) dislocation at T = 300 K and T = 600 K for
Fe-0.85at%C, such as in Ref. [Wilde 2000].
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Figure 5.7: (Left) Representation of a carbon Cottrell atmosphere decorating a
screw dislocation in α-iron at T = 300 K. The iron atoms are not shown for clarity.
(Right) Carbon atom map showing solute enhancement along a dislocation in a
MA/ODS alloy. Figure adapted from Ref. [Miller 2003].

concentration is very low in the outer shells of the atmospheres imaged by atom

probe techniques. Consequently, in the far-field, where the carbon atoms are

weakly bound to the dislocation, the frontier where the atmosphere ends and

the matrix starts cannot be precisely defined. The authors of Ref. [Wilde 2000]

have used a predominantly visual criterion to estimate the extent of the solute

enhanced region around the line defect. Although we have to admit that it is dif-

ficult to think of a different way of doing that, such an approach means that the

extent of the atmospheres is somewhat human-biased. In this work, the volume

of interest for the purpose of comparison to experimental data was delimited in

directions perpendicular to the dislocation line by a rectangle just wide enough

to encompass a Cottrell atmosphere defined according to the Cochardt’s crite-

rion at T = 300 K. In the next paragraphs, we compare our theoretical carbon

distributions with the atom probe data provided by Wilde et al [Wilde 2000] and

Miller et al [Miller 2003, Miller 2006].

We start by looking at Table 5.2, where the number of carbon atoms per unit

length of dislocation (NC/l) is presented. In this work, NC/l is given by:

NC/l =
1

L

η∑

i

niNi (5.8)
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Method References Dislocation Extent (nm) NC/l (nm−1)
Atom probe [Wilde 2000] Screw 10× 10 105

Molecular statics This work Edge 15× 6 240
This work Screw 8 × 8 125

Table 5.2: Extent and number of carbon atoms per unit length of dislocation, in
nm−1, in the zone corresponding to a Cottrell atmosphere in Fe-0.85at%C (low
carbon martensite).

where η is the number of energy levels represented in the volume of interest, Ni is

the number of sites with carbon-dislocation binding energy Eb
i , and L is the dislo-

cation length, in nm. For the calculation of ni with Eq. (5.5), n0 corresponding to

a matrix concentration of 0.85at%C was assumed (see Fig. 5.6, at T = 300 K). In

the experimental work reported by Ref. [Wilde 2000], during the specimen aging

(before atom probe data was collected), about 105 carbon atoms per nanometer

segregated to form an atmosphere around the dislocation. This value is close to

what we have theoretically predicted around a screw dislocation (≈ 125 C/nm),

and less than half the number of carbon atoms that are expected to segregate

to the stress field of an edge dislocation (≈ 240 C/nm). Thus, it seems that the

theoretical results of this work also support the conclusion of Ref. [Wilde 2000],

that is, the dislocation depicted in Figs. 5.1 and 5.2 is screw. It should be men-

tioned that the dislocation line in Ref. [Wilde 2000] is oriented along the [110]

rather than the [111] direction. In any case, the agreement between theoretical

predictions and the experimental data is remarkable here.

The results presented in Table 5.3, in turn, refer to a more recent experi-

mental work carried out by Miller and co-workers with atom probe tomography

[Miller 2003, Miller 2006]. Solute enhancement around dislocations is measured

in terms of the enrichment (or partitioning) factor, which is the ratio of the carbon

concentration in the atmosphere to the carbon concentration in the matrix. The

theoretical enrichment factor εfac from the distributions obtained by Eq. (5.5)

was defined as follows:

εfac =
〈ni〉
n0

(5.9)

where 〈ni〉 is the mean occupancy in the volume of interest. The

same amount of background carbon content in the specimen analyzed in

Ref. [Miller 2003] (0.18at%C, which yields the carbon distributions represented

in Fig. 5.5) was considered in the theoretical calculations of ni. The results of

Ref. [Hanlumyuang 2010], which employed a combination of DFT (used to cal-

culate the components of the Pij tensor) and anisotropic elasticity to perform
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Method References Dislocation Extent (nm) εfac

Atom probe [Miller 2003, Miller 2006] Unknown 10× 10 7.7

Molecular statics This work Edge 15× 6 6.7
This work Screw 8 × 8 5.1

Elasticity+DFT [Hanlumyuang 2010] Edge 20× 20 5.3
[Hanlumyuang 2010] Screw 12 × 12 4.4

Table 5.3: Extent and solute enrichment in the zone corresponding to a Cottrell
atmosphere in Fe-0.18at%C.

carbon distribution in the stress field of dislocations, are also presented. As it

can be seen, the theoretical predictions shown in Table 5.3 underestimated the so-

lute enrichment compared to the experimental data. This probably comes mostly

from the fact that the theoretical models have not taken into account the effects

of the other alloying elements (see Table 5.1) on carbon segregation. For instance,

titanium concentration in the dislocation vicinity increased by a factor of 5.5 and

titanium is known to form carbides in steel. Moreover, Ref. [Hanlumyuang 2010],

due to the limitations of the elasticity approach, have not included in the calcula-

tions the core region, defined as a cylinder of diameter 6b around the dislocation

line. Despite the difference in the compositions of the real alloy and the model

systems (only carbon and iron), the agreement can also be considered satisfactory,

even from a quantitative point of view, in this case.

5.6 Overview

An equation proposed by Louat has been used to obtain the carbon distribution

in the stress field of an edge and a screw dislocation in α-iron. As pointed out by

Beshers, Louat’s formulation corresponds to the well-known Fermi-Dirac statis-

tics. This approach predicts a high carbon concentration right in the dislocation

core because solute-solute interactions are not taken into account. Saturation

concentration has been obtained with a simple Monte Carlo-like algorithm cou-

pled to molecular statics simulations. Results of this MC program provided a

maximum fractional occupancy of 0.15 and 0.19 carbon atom per interstitial site

in the first shell (R < b) surrounding the line of an edge and a screw dislocation,

respectively. These maximum occupancies have been adopted as the upper limit

for carbon distributions with Louat’s formulation. Theoretical predictions have

been demonstrated to be in good agreement with two sets of experimental atom

probe data available in the literature.
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5.7 Ongoing work

Carbon distributions around dislocations done according to Eq. (5.5) may be a

useful supporting tool for the simulation of dislocation dynamics at the atomic

scale, provided that the condition of saturation concentration is taken into

account. For instance, different carbon concentrations can be generated (see

Fig. 5.7) and then the force necessary to unpin the dislocation can be calculated

with molecular dynamics simulations by applying an external shear stress.
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Summary and conclusions

In spite of the fact that strain aging has been theoretically and experimentally in-

vestigated for decades since Cottrell and Bilby first proposed their seminal theory,

there still is much work to be done in order to achieve the complete understanding

of the underlying atomistic mechanisms behind this phenomenon. In this thesis,

static strain aging in bcc iron at the atomic scale has been theoretically investi-

gated by bringing together different computational methods. The main results

presented throughout the manuscript are summarized in the next paragraphs.

Chapter 2 reported an investigation on the effect of the long range stress fields

of an edge and a screw dislocation on carbon diffusion in α-iron. First, the posi-

tions corresponding to the energy minima (octahedral sites) and the saddle points

(tetrahedral sites) in the low-to-moderate strained iron lattice outside the disloca-

tion core (defined in this work for both dislocation types as a cylindrical volume of

radius 4b ≈ 1 nm surrounding the dislocation line) were mapped within a radius

of 6 nm from the dislocation line. The carbon-dislocation binding energies were

obtained from molecular statics simulations performed by LAMMPS with a Fe-C

EAM interatomic potential. In the part of the crystal under tension above the

glide plane of an edge dislocation, the binding energies are positive (attractive in-

teraction between the defects), whereas below the glide plane, the crystal is under

compression and the binding energies are negative (the defects repel each other).

Near the glide plane, the edge dislocation creates an important shear stress, and

the type of interaction with a carbon atom (attractive or repulsive) depends on

the tetragonal distortion that the point defect induces locally. The screw disloca-

tion, in turn, creates a predominantly shear stress field in the surroundings; zones

of positive and negative carbon-dislocation binding energies present a three-fold

symmetry around the screw dislocation. The stress field created by both dislo-
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cation types induces a location dependent bias on carbon diffusion, which results

in a drift in carbon trajectories. Such a bias should play the major role in the

early stages of Cottrell atmosphere formation, driving the first arriving solutes

towards the core. From the knowledge of the migration energies, it was possible

to calculate the transition rates in the neighborhood of the line defects. With

these rates, AKMC simulations were performed for temperatures ranging from

300 K to 600 K. Both dislocation types were seen to attract the carbon atoms

diffusing nearby, even if this effect is subtle. The fraction of carbon trajectories

that terminated in the dislocation core in stress-assisted AKMC simulations (34%

for an edge and 32% for a screw dislocation) was larger than in simple (unbiased)

random walks (27%). The kinetics of carbon segregation to dislocations obtained

by AKMC was fitted to Hartley’s model and was demonstrated to obey the t
2
3

law proposed by Cottrell and observed since then in macroscopic experiments.

In Chapter 3, we obtained energy barriers for carbon migration in the neigh-

borhood of an edge or a screw dislocation with anisotropic elasticity theory and

compared to the energy barriers given by molecular statics simulations. It is

remarkable that the agreement between the methods is much better for the oc-

tahedral sites than for the tetrahedral sites. Regarding the energy barriers, the

methods are in reasonable agreement (absolute errors of less than 5 meV on aver-

age) if the carbon-dislocation separation is larger than 1.5 nm (screw) and 2–4 nm

(edge). However, even small absolute errors in the migration energies may lead to

significant temperature-dependent errors in quantities that depend on the Boltz-

mann factor. For instance, an absolute error of only 5 meV in the energy barriers

yields a relative error of about 20% in these quantities at T = 300 K. AKMC

simulations were carried out at T = 300 K with the energy barriers provided by

both methods. The kinetics of carbon segregation to dislocations simulated by

AKMC with energy barriers calculated by molecular statics has been seen to pro-

ceed faster than its counterpart using energy barriers calculated by anisotropic

elasticity theory, owing to the largest absolute errors found near the dislocation

core. Such a discrepancy indicates that the atomistic treatment still is required

in the dislocation vicinity, particularly at low temperatures. On the other hand,

anisotropic elasticity theory provides a very fast way to calculate energy barriers

in the far-field, where the agreement with atomistic simulations is almost perfect.

As such, anisotropic elasticity theory may be a useful tool to be incorporated into

a future model to investigate the dynamics of Cottrell atmosphere formation.

In Chapter 4, we used AKMC to study the behavior of a single carbon atom

right in the core of an edge or a screw dislocation. From the analysis of the trajec-
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tories generated by the simulations, we show that the carbon atom spends most of

the time performing back and forth jumps between certain states separated by low

energy barriers (0.33 eV and 0.42 eV in the core of an edge dislocation; 0.20 eV

in the core of a screw dislocation) rather than traveling fast inside the dislocation

channel. This behavior was also observed to predominate in MD simulations at

T = 600 K (edge and screw) and T = 800 K (edge only). Indeed, with our current

AKMC implementation, this low barrier problem does not allow us to observe

pipe diffusion at temperatures lower than 400 K (edge) and 750 K (screw). The

diffusion coefficient for carbon diffusion along the dislocation line was estimated

from AKMC-generated trajectories to be about two orders of magnitude larger

than the bulk diffusion coefficient, for both dislocation types. Furthermore, the

effective activation energies for pipe diffusion were 0.670 eV (edge) and 0.738 eV

(screw), about 20% and 5% lower than the energy barrier for bulk diffusion ac-

cording to the EAM potential (0.816 eV), respectively; the preexponential factor

for pipe diffusion was seen to be about two orders of magnitude larger than for

bulk diffusion.

Statistical physics using the carbon-dislocation binding energies calculated by

molecular statics in Chapter 2 was employed in Chapter 5 to obtain carbon distri-

butions in the stress field of an edge or a screw dislocation. Carbon concentration

in the surroundings of the line defects as a function of carbon concentration in

the iron matrix was calculated by an equation proposed by Louat, which corre-

sponds to Fermi-Dirac statistics. Taking into account that this equation predicts

a non-realistic high carbon concentration near the dislocation core (three or four

carbon atoms per iron atom), a simple MC-like algorithm was developed to esti-

mate the maximum carbon content within a radius of b from the dislocation line

(where the largest carbon-dislocation binding energies are found). MC predicts

a maximum carbon content in the considered volume of 33± 2at%C (edge) and

23 ± 2at%C (screw). The saturation concentration calculated by MC was taken

as a upper limit in the subsequent applications of Louat’s fromulation. The the-

oretical carbon distributions were compared to experimental atom probe data,

revealing a good agreement between our work and experiments. This provided

an evidence that our atomistic model is able to describe the carbon-dislocation

interactions in a realistic fashion.
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Future work

One can see the results presented in Chapters 2 and 3 as the current stage of our

efforts to build a model based on AKMC to simulate the dynamics of Cottrell

atmosphere formation in α-iron. The very first step, carried out in the course of

this PhD work, was to investigate the behavior of a single carbon atom diffusing

around a dislocation and eventually being dragged by its stress field towards the

core. This is obviously the simplest case, where only two entities (the point and

the line defect) interact with each other, and even so it is not free of complications.

As SSA proceeds, other carbon atoms arrive to the stress field of the dislocation.

One should expect that, with the increasing concentration of solutes, two or more

carbon atoms may be found close enough to each other, so that they interact with

each other and not only with the dislocation. Such solute-solute interactions have

to be taken into account, because they are likely to change the energy barriers for

carbon migration (and, consequently, the transition rates). Last but not least,

because of the strain in the lattice due to the dislocation, the simulation boxes

used thus far lack periodic boundary conditions in directions perpendicular to the

dislocation line. Consequently, in the AKMC simulations reported in Chapters 2

and 3, only a fraction of the carbon trajectories reached the dislocation core, while

the remaining moved out of the simulation box. To overcome this limitation,

periodic boundary conditions have to applied somehow in all directions, which is

not a trivial implementation.

For the next step of this project, a model to study the dynamics of Cottrell

atmosphere formation is envisaged as follows:

i. The energy minima and saddle points in the far-field are calculated by

anisotropic elasticity theory (these calculations are very fast);

ii. Within a certain carbon-dislocation separation, molecular statics simulations

is employed to obtain the energy barriers;

iii. Whenever two or more carbon atoms are expected to interact with each

other, a more sophisticated method (e.g., NEB) should be used to calculate

on-the-fly the energy barriers for carbon migration.

Alternatively, for situation (iii) above, the innovative approach recently proposed

by N. Castin, where most of the energy barriers are obtained by an artificial

neural network algorithm [Castin 2011], may be useful.

The study of carbon behavior in the core of an edge or a screw dislocation,

presented in Chapter 4, still is in a preliminary stage. For the moment, the AKMC
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algorithm that we have been using is not able to properly handle the low barrier

problem that we faced in the dislocation core, which prevents AKMC simulations

of pipe diffusion at low temperatures. To overcome this limitation, the algorithm

has to be modified in order to treat the fast and slow transitions separately. In

other words, the rates of slow transitions should be calculated taking somehow

into account the rates of the fast transitions. An interesting possibility which is

easier to be done with MD is to insert two or more carbon atoms in the dislocation

core, in order to verify how the mutual interaction between solutes affect pipe

diffusion, if it does.

A third branch of research that may be followed regards the effect of a Cottrell

atmosphere on dislocation glide. Tapasa and co-workers reported the results of

MD simulations on the glide of an edge dislocation with a single carbon atom in

its core [Tapasa 2007]. The natural next step is to perform the same investigation

on a more realistic system, where many carbon atoms will be decorating a dislo-

cation. A Cottrell atmosphere at different instants of the strain aging process, for

a given initial carbon concentration in the iron matrix, can be generated accord-

ing to the scheme presented in Chapter 5. Then, the force required to unpin the

dislocation and make it move free from its Cottrell atmosphere can be calculated,

at different temperatures and strain rates, from molecular dynamics simulations.

In these MD simulations, an external shear stress is applied to the simulation

box in order to make the dislocation move along its glide plane. Given the size of

the systems and the number of simulations to be carried out, one should expect

that, in contrast with AKMC simulations, a large amount of CPU time will be

required to accomplish this work.

Although there is much to be done concerning the Fe-C system, extending

the investigations to other solutes than carbon (e.g., nitrogen, phosphorus, man-

ganese, copper, etc) is certainly desirable from a technological point of view. For

the sake of example, phosphorus is known to have an important effect on the

thermal and neutron embrittlement of reactor pressure vessel steels. Obviously,

considering other alloying elements depends first on the availability of interatomic

potentials. A number of EAM potentials for binary Fe-X systems (where X=Cu,

Cr, Ni, P, Mg) has been developed in recent years.

Apart from dislocations, grain boundaries constitute another class of intrinsic

extended defects commonly found in real materials. Grain boundary segregation

of impurities also plays an important role in the mechanical properties of metals,

since it results in loss of grain boundary cohesion and facilitates brittle fracture.

This is another aging aspect that can be addressed in a near future by atomistic
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kinetic Monte Carlo in a fashion similar to what we have done so far for carbon

segregation to dislocations.
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Appendix A

The Fe-C interatomic potential

Abstract

Here we present the iron-carbon potential that we have used in the atomistic sim-

ulations. It is based on the embedded atom method (EAM) and was constructed

so as to fit to the data obtained from ab initio calculations for a carbon atom in

dilute solid solution in bcc iron, occupying either an octahedral or a tetrahedral

site. The original potential has been seen to predict a saddle point slightly off

the tetrahedral position. This problem was fixed by adding a Gaussian function

to the Fe-C pairwise function, which does not change the position corresponding

to the local energy minimum (the octahedral site).
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A.1 Introduction

Ideally, the total energy of a system of atoms should be obtained by solving

the main equation of quantum mechanics, i.e., the time-independent (stationary)

Schrödinger equation Ĥψ = Eψ (here, Ĥ is the Hamiltonian operator and ψ is

the wave function). In practice, this is not doable even for isolated atoms as

light as helium. Some approximations to the exact solution of Ĥψ = Eψ have

been developed along the decades, and nowadays the most widely used is density

functional theory (DFT) proposed by Walter Kohm in the 1960s [Kohm 1965].

In Kohm’s formulation, the total energy of an atomic system is a functional of

the electron density function. The development of approximations to the exact

solution of the Schrödinger equation in general and DFT in particular made pos-

sible to simulate the ground state properties of a number of molecular and solid

state systems. Despite such an important advance in the theoretical side, an issue

still remains concerning the size of the model systems. Simulations of some com-

plex systems in a realistic fashion (e.g., proteins or, in our case, the environment

surrounding line defects in a crystal) requires that some thousands of atoms are

included in the model, the computational cost of which is prohibitive even with

the most efficient quantum-mechanical approximations. This is normally achieved

by analytical interatomic potentials that mimic somehow the chemistry of a re-

alistic atomic system without taking into consideration explicitly the underlying

electronic structure.

For solid state systems, the embedded atom method (EAM) proposed by Daw

and Baskes [Daw 1983] became very popular in recent years. In their method,

a semi-empirical interatomic potential is obtained by fitting some parameters

in order to reproduce a certain set of key properties of the material of interest

(e.g., elastic constants, binding energies, heat of formation, lattice parameter,

etc) given by ab initio calculations or experiments. The total potential energy of

a system within EAM is given by the following equation:

Etot =
1

2

∑

i,j

φij(rij) +
∑

i

Fi

[
∑

i$=j

ρj(rij)

]
(A.1)

In this equation, φij(rij) is a short range pair potential function that obviously

depends on the types of the atoms i and j and describes the attractive/repulsive

electrostatic interactions between them. Fi[ρ(rij)] is the embedding functional,

which represents the interaction of the i-th atom with the surrounding electron

density. An important corollary proved by Stott and Zaremba and useful in
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the derivation of the embedding functional Fi[ρ(rij)] states that the energy of

an impurity is a functional of the unperturbed electron density at the position

occupied by the impurity in the host lattice [Stott 1980]. In Daw and Baskes’

words, EAM is thus called because the i-th atom is considered as an impurity

embedded in the host lattice consisting of all other atoms, so that the energy of

the i-th atom is a functional of the constant electron density of all other atoms

before its introduction in the host at that specific location.

Taking into consideration that the system investigated in this thesis is a rel-

atively large one (some hundreds of thousands atoms) where an interstitial atom

(carbon) is found in solution in a metallic matrix (α-iron), an EAM potential

ends up being the most appropriate approach to account for the atomic inter-

actions. In the next sections, we provide a brief description of the iron-carbon

EAM potential that has been used throughout this work.

A.2 The original Fe-C potential

The original version of the iron-carbon EAM potential used in this work has

been developed by Becquart and co-workers and is presented in details in

Ref. [Becquart 2007]. It has been fitted to ab initio calculations performed with

the Vienna Ab initio Simulation Package (VASP) [Kresse 1993], for a carbon

atom in dilute solid solution occupying either an octahedral or a tetrahedral site

in a cubic simulation box with 128 iron atoms arranged on a bcc lattice. In the

DFT calculations, the 3d64s2 valence configuration was used for the Fe atom; for

the C atom, 2s22p2. A non-exhaustive description of the Fe-C potential functions

follows in the next paragraphs.

Following Refs. [Ackland 1997, Mendelev 2003], the Fe-C interaction was de-

scribed by a linear combination of truncated polynomials of degree 3 in the in-

terval 1 ≤ r ≤ 3.502 Å:

φFe−C(r) =
N∑

i=1

aiH(bi − r)(bi − r)3 (A.2)

where H is the Heavyside function and the parameters ai and bi can be seen in

Table A.1.

The carbon electron density in the interval 0 ≤ r ≤ 4.808 Å was postulated

to be:

ρC(r) =
N∑

i=1

ciH(di − r)(di − r)3 (A.3)
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N ai (a.u./Å3) bi (Å)
1 25.8403449446387 1.57392207030071
2 5.29633693622809 2.50697533078414
3 4.03000262768764 2.55706258348374
4 -7.23257363478654 2.74993431502404
5 -7.91809159848018 3.11129997684853
6 0.283612435794859 3.50162017458081
7 12.1869023019844 1.64805018491946
8 9.19127905165634 3.08003832563079

Table A.1: Parameters of the iron-carbon cross potential. a.u. means density
arbitrary units. Values taken from Ref. [Becquart 2007].

N ci (a.u./Å3) di (Å)
1 -16.205911 0.5
2 -0.245035 4.54378

Table A.2: Parameters of the carbon electron density potential. a.u. means
density arbitrary units. Values taken from Ref. [Becquart 2007].

where the parameters ci and di are shown in Table A.2.

Finally, the embedding function is represented as follows:

FC(ρ) = F1
√

ρ + F2ρ
2 (A.4)

In this equation, F1 = −2.78333808071882 eV·a.u.−1/2 and F2 =

1.45647907575885× 10−3 eV·a.u.−2, where a.u. is a density arbitrary unit.

The parameters in Eqs. (A.2), (A.3), and (A.4) were fitted with the aid of

the software ASSIMPOT 1. In the frame of ASSIMPOT, the target functions are

discretized on a mesh or projected on a finite number of other functions. The

fit procedure consists of finding out the values of the coefficients that yield the

minimal deviation of the EAM model with respect to the reference data. The

algorithm of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) has been used to

carry out numerical optimization [Press 2007].

The Fe-Fe interactions, in turn, are described by the interatomic potential

developed by Ackland and Mendelev [Mendelev 2003, Ackland 2004]. This po-

tential provides a good description (compared to both ab initio calculations and

experiments) of many bulk properties and – which is more important, considering

the needs of our work – of the geometry of the dislocation cores. It is currently

admitted to be the state-of-the-art potential for α-iron. To the interested reader,

1Described in: “Documentation du code ASSIMPOT: bases théoriques et utilisation, note
interne EDF, HI-23/05/003/A”.
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the analytical form of the potential Fe-Fe functions are presented in Table 5 in

Ref. [Ackland 2004].

As the potential aimed at the simulation of dilute solid solutions of carbon in

bcc iron, no C-C interaction part was derived. Moreover, EAM does not seem

to be the best choice to describe carbon-carbon interactions, because it does not

allow for directional covalent bonding.

Despite the fact that this Fe-C potential was fitted to the data corresponding

to only two simple configurations (i.e., an isolated carbon atom sitting on an octa-

hedral or a tetrahedral site), its application to other configurations (e.g., two car-

bon atoms in neighboring positions) have been seen to compare well with ab initio

calculations or experiments, as one can see in Table 5 in Ref. [Becquart 2007].

This potential has been successfully used in a number of works recently published

[Clouet 2008, Garruchet 2008, Hanlumyuang 2010, Sinclair 2010]. For the time

being, it is, to our knowledge, the Fe-C potential that better describes the min-

imum energy path for carbon migration in bcc iron and this is the reason for

having chosen it. However, in the course of this PhD work, a bad description

of the energy potential landscape in the vicinity of the tetrahedral site has been

found. This problem and the solution that we have applied are discussed in the

next section.

A.3 The saddle point problem

In Ref. [Becquart 2007], the tetrahedral site is said to correspond to the the

saddle point for carbon migration in bulk α-Fe according to the EAM potential.

The migration energy, which is the difference of the total energies of the carbon

atom sitting on the tetrahedral and the octahedral sites, is 0.85 eV. However,

some simulations performed in the frame of this PhD work for testing purposes

reached a different conclusion. These simulations are described in the following.

First, a cubic simulation box with 16,000 iron atoms (20×20×20 unit cells) was

built to be used with LAMMPS. Then, a number of planes perpendicular to the

migration path followed by a carbon atom from a [100] O-site to a [001] O-site,

passing through a [010] T-site, was defined. This corresponds to an octahedral-

to-octahedral path along the [010] direction. For every plane, a rectangle of area

0.1 × 0.1 nm2 with the octahedral-to-octahedral line passing through its center

was divided into an uniform grid (grid spacing of 0.005 nm). Molecular statics

simulations were performed, where a carbon atom was inserted in a position

corresponding to a grid point. The carbon atom was kept fixed at its position
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while the iron atoms were allowed to fully relax.

Fig. A.1 shows the energy contour maps for each plane. Each point in the maps

represents the total energy of the system with a carbon atom at that position

minus the total energy of the carbon atom in the octahedral site. We can see in

this sequence of maps that the minimum energy path is unique – the minimum

of each plane is found right in its center – up to very close to the tetrahedral

site, where the minimum energy path is split into four degenerate saddle points,

yielding an energy barrier of 0.81 eV. Therefore, the actual energy barrier for

carbon migration predicted by the original EAM potential is 0.04 eV lower than

the energy barrier reported in Ref. [Becquart 2007]. The positions of the saddle

points were (Tx ± 0.15, Tz ± 0.15), where Tx is the x coordinate of the T-site

(along the [100] direction) and Tz is its z coordinate (along the [001] direction).

From theses simulations, the conclusion that one can reach is that the T-site,

according to the Fe-C potential, is a local maximum on the plane, not a minimum,

as it must be if it was the saddle point.

The solution for this problem was not trivial. Indeed, it was only attained by

trial and error. We first identified that when the system is at one of the four energy

minima on the plane that contains the tetrahedral site, represented in Fig. A.1

(E), the carbon atom has not four iron atoms at a distance of 0.257 nm as second

nearest neighbors. It has two second nearest neighbors at a distance of 0.236 nm

and two, now third, nearest neighbors at a distance of 0.271 nm. Our attempts

consisted of adding Gaussian functions to the Fe-C pairwise interaction function

φ(r) near r = 0.257 nm in order to lower the second derivative at this point. After

many trials, a set of three Gaussian functions gi(r) = ai exp[(−(r−ri)2/60σ] were

added and brought the saddle point back to the tetrahedral site. The parameters

of the Gaussian functions are a1 = −0.01, a2 = a3 = 0.01, r1 = 0.2539 nm,

r2 = 0.2365 nm, r3 = 0.2713 nm, and σ = 0.0002. In Figs. A.2 and A.3, one

can see the energy mapping on the plane perpendicular to the [010] direction

that contains the tetrahedral site (in the center), obtained by molecular statics

simulations in the same way as the results shown in Fig. A.1 with the original

and the modified Fe-C EAM potential, respectively. It can be clearly seen that

the modification introduced in the Fe-C potential brings the saddle point back to

the tetrahedral site. This modification is obviously very localized. Consequently,

it does not change neither the geometry nor the total energy of the local energy

minimum, which remains corresponding to the carbon atom in the octahedral site.

In addition, the configurations in Table 5 in Ref. [Becquart 2007] were simulated

with the modified Fe-C potential, and all the results matched.
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Figure A.1: Energy mapping on several planes perpendicular to a [010] carbon
migration path: (A) origin (plane containing the O-site), (B) origin + 0.02 nm,
(C) origin + 0.05 nm, (D) origin + 0.06 nm, (E) origin + 0.07 nm, (F) origin +
0.07138 nm (plane containing the T-site).
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Figure A.2: Energy mapping on the plane perpendicular to the [010] direction
that contains the tetrahedral site (in the center) obtained by the original Fe-C
EAM potential. The energy reference is the total energy of the simulation box
with the carbon atom occupying the octahedral site.
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Figure A.3: Energy mapping on the plane perpendicular to the [010] direction
that contains the tetrahedral site (in the center) obtained by the modified Fe-C
EAM potential. The energy reference is the total energy of the simulation box
with the carbon atom occupying the octahedral site.
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Appendix B

Résumé: “Simulation à l‘échelle

atomique du vieillissement

statique dans le fer α”

B.1 Présentation de la problématique et

l‘approche

La plupart des aciers utilisés dans les centrales nucléaires subissent des traite-

ments thermomécaniques de mise en forme (hypertrempes, laminages, traitements

thermiques de revenu, de recristallisation...) qui leur confèrent les propriétés req-

uises. Mais les matériaux peuvent se retrouver alors dans des états d‘équilibre

thermodynamique instables ou métastables. Sous l‘effet de la température de

fonctionnement, ils vont avoir tendance à évoluer pour retrouver plus ou moins

vite leur état d‘équilibre thermodynamique. Ce retour à l‘équilibre (vieillisse-

ment) se traduit par une évolution microstructurale et par une évolution des

propriétés des matériaux: le plus souvent durcissement et fragilisation (perte de

ductilité et/ou décalage de la température de transition fragile-ductile). Parmi

les principaux mécanismes de vieillissement susceptibles d‘apparâıtre sur les com-

posants des centrales nucléaires, les plus importants sont la précipitation et la

ségrégation des atomes interstitiels (carbone ou azote) sur les dislocations qui

entrâınent selon la température un vieillissement statique ou dynamique. Ces

deux mécanismes sont liés à la diffusion et la mobilité des interstitiels ainsi

que des dislocations. Si les bases de la diffusion sont relativement bien con-

nues dans une matrice libre de contrainte, il en est tout autrement quand les
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espèces diffusantes subissent un champ de contraintes de nature hétérogène lié à

la présence des dislocations ou d‘autres défauts. De plus, les processus physiques

d‘ancrage-désancrage des dislocations sont assez mal connus. Dans les deux cas,

la modélisation de ces mécanismes à l‘échelle atomique permet de mieux com-

prendre et/ou de prédire le comportement des aciers lors du vieillissement.

Au cours de ce projet, nous avons donc développé une approche couplant

deux techniques complémentaires de simulation à l‘échelle atomique: la statique

moléculaire (SM) et le Monte Carlo cinétique (MCC). La méthode de MCC qui

traite des sauts de différentes espèces atomiques sur un réseau rigide nécessite en

effet de connâıtre les probabilités de saut et les temps de résidence qui ont été,

dans ce travail, obtenues par des simulations de SM. Le modèle de cohésion choisi

pour cette tache est un potentiel interatomique développé dans le cadre du projet

PERFECT. Dans un premier temps, nous avons analysé et modifié le potentiel

inter-atomique Fe-C, puis nous avons déterminé les énergies de point-selle par SM

afin de créer un catalogue d‘interactions carbone-dislocation (coin et vis) pour un

très grand nombre de configurations. Ces interactions ont alors été utilisées dans

le MCC pour étudier la diffusion d‘un atome de carbone vers les dislocations coins

et vis dans le fer cubique centré et essayer de prédire la cinétique de formation

des atmosphères de Cottrell.

Les deux dislocations ont été créées par le déplacement des atomes de fer selon

la théorie de l‘élasticité anisotrope des défauts linéaires [Eshelby 1953, Stroh 1962,

Stroh 1958]. Un tel déplacement correspond au champ de Volterra élastique créé

par la dislocation. Dans les deux cas, le vecteur de Burgers est "b = a0/2[111] et

le plan de glissement est un plan {101} qui divise les bôıtes de simulation en deux

moitiés. Ce sont en effet les dislocations les plus couramment observées dans le

fer cubique centré. Pour la dislocation coin, la ligne de dislocation est orientée

selon la direction [121], tandis que la ligne de dislocation de la dislocation vis est

orientée selon la direction [111]. En raison du fait que la dislocation détruit la

périodicité du cristal dans les directions perpendiculaires à la ligne de dislocation,

des conditions aux limites périodiques ont été appliquées seulement le long de

cette direction. Les bôıtes de simulation, representées dans la Fig. B.1, sont des

cylindres de rayon 15 nm. Les anneaux extérieurs se composent d‘atomes de fer

fixés durant les simulations, afin d‘éviter des relaxations indésirables dues aux

effets des surfaces libres.
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Figure B.1: Vue du haut des bôıtes de simulation cylindriques contenant une
dislocation coin et une dislocation vis (au centre), respectivement. Les atomes
de fer dans les anneaux extérieurs verts (2 nm d‘épaisseur) sont maintenus fixes
afin de représenter le champ de déplacement correct créé par les dislocations.

B.2 Effet du champ de contraintes des disloca-

tions sur la diffusion du carbone

Les simulations de SM ont été réalisées avec le code LAMMPS [Plimpton 1995]

et un potentiel EAM développé récemment [Becquart 2007], afin d‘obtenir les

configurations atomiques, les énergies de liaison carbone-dislocation et les énergies

de migration de l’atome de carbone dans le voisinage des défauts linéaires. En

utilisant les informations recueillies par SM, des simulations MCC ont été réalisées

pour des températures dans la gamme 300-600 K, afin d‘étudier le comportement

de l‘atome de carbone dans le champ de contraintes des dislocations avant qu‘il ne

soit piégé par le coeur de la dislocation. Ces travaux peuvent être donc considérés

comme une toute première étape vers la simulation complète à l‘échelle atomique

du stade initial du vieillissement statique, à savoir la formation d‘une atmosphère

de Cottrell autour d‘une dislocation dans le fer.

L‘atome de carbone est beaucoup plus petit que l‘atome de fer. Pour cette

raison, on le trouve donc en solution solide dans une matrice de fer dans des

positions interstitielles. Il existe deux types des sites interstitiels dans le réseau

du fer cubique centré: dans le site octaédrique (O), l‘atome de carbone est au

centre de l‘octaèdre formé par six atomes de fer qui occupent les sommets. Les

plus proches premièrs voisins (deux atomes) et les seconds voisins (quatre atomes)

sont situés à une distance de 0.179 nm et 0.198 nm, respectivement, de l‘atome

de carbone, selon le potentiel EAM. Dans le site tétraédrique (T), l‘atome de

carbone est entouré de quatre atomes de fer situés à une distance de 0.179 nm de

celui-ci.
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L‘interprétation des résultats expérimentaux [Porter 1981], corroborés plus

tard par des calculs ab initio [Jiang 2003, Domain 2004] indique que le mécanisme

de diffusion du carbone interstitiel dans le fer cubique centré s‘effectue par des

sauts de site octaédrique en site octaédrique en passant par un site tétraédrique.

Lorsque il se trouve dans un site octaédrique, l‘atome de carbone est au centre de

l‘un des faces d‘une cellule cubique centré. Il peut alors sauter sur un des quatre

sites octaédriques voisins coplanaires situés sur les bords du cube. L‘hypothèse

de base du travail présenté ici est que le mécanisme de diffusion simple se produit

le plus souvent là où la matrice de fer est modérément distordue par la présence

d‘une dislocation.

Les énergies de liaison carbone-dislocation ont été obtenues par SM. Elles

sont présentées dans les Figs. B.2 et B.3. Dans notre convention, lorsque Eb > 0,

l‘interaction entre les défauts est attractive; sinon, si Eb < 0, elle est repulsive.

Les barrières d‘énergie ont été également obtenues par des simulations de SM.

Les Figs. B.4 et B.5 répresentent les barrières d‘énergie pour les six types de

transitions qui un atome de carbone peut subir autour d‘une dislocation coin

et d‘une dislocation vis, respectivement. Ces barrières ont été utilisées par le

programme de MCC afin de simuler les trajectoires du carbone dans le champ de

contrainte des dislocations.

Le champ de contraintes d‘une dislocation modifie les probabilités des tran-

sition autour du défaut linéaire. Le biais que cela ajoute à une marche aléatoire

est quantifié par le vecteur de déplacement moyen, défini comme suit:

"〈d〉 =
N∑

j=1

Pi→j
"δi→j (B.1)

Les Figs. B.6 et B.7 représentent la projection des vecteurs de déplacement

moyen pour T = 300 K et T = 600 K sur les plans perpendiculaires aux lignes

de dislocations pour les dislocations coin et vis, respectivement. On constate

que le biais de la diffusion du carbone est beaucoup plus important autour d‘une

dislocation coin qu‘autour d‘une dislocation vis.

La cinétique de diffusion du carbone simulée par le MCC avec les barrières

obtenues par des simulations de SM est mise en évidence dans les Figs. B.8 et

B.9 qui représentent l‘évolution de la fraction d‘atomes de carbone piégées par les

deux types de dislocations. On constate tout d‘abord que pour la dislocation coin,

un premier effet notable est que la cinétique est accélérée par rapport à la marche

aléatoire simple. Un tel effet est évidemment dépendant de la température, mais

il est encore présent à la température la plus élevée (600 K) considérée dans

131
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Figure B.2: Cartographie des énergies de liaison carbone-dislocation obtenues par
des simulations atomistiques pour les différentes positions possibles de l‘atome
de carbone autour d‘une dislocation coin (au centre) alignée parallèlement à la
direction [121] (perpendiculaire à la page). Le cercle gris au centre (dont le
diamètre équivaut à 8b) se rapporte à la région définie comme étant le coeur de
la dislocation.
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Figure B.3: Cartographie des énergies de liaison carbone-dislocation obtenues par
des simulations atomistiques pour les différentes positions possibles de l‘atome de
carbone autour d‘une dislocation vis (au centre) qui est alignée parallèlement à
la direction [111] (perpendiculaire à la page). Le cercle gris au centre (diamètre
équivaut à 8b) se rapporte à la région définie comme étant le coeur de la disloca-
tion.
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Résumé

Figure B.4: Cartographie des barrières d‘énergie obtenues par des simulations
atomistiques pour la diffusion de l‘atome de carbone autour d‘une dislocation
coin (au centre) alignée parallèlement à la direction [121] (perpendiculaire à la
page). Le cercle gris au centre (dont le diamètre équivaut à 8b) se rapporte à la
région définie comme étant le coeur de la dislocation.
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Figure B.5: Cartographie des barrières d‘énergie obtenues par des simulations
atomistiques pour la diffusion de l‘atome de carbone autour d‘une dislocation vis
(au centre) qui est alignée parallèlement à la direction [111] (perpendiculaire à la
page). Le cercle gris au centre (diamètre équivaut à 8b) se rapporte à la région
définie comme étant le coeur de la dislocation.
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Figure B.6: Vecteur de déplacement moyen dans le voisinage d‘une dislocation
coin pour T = 300 K et T = 600 K.
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Figure B.7: Vecteur de déplacement moyen dans le voisinage d‘une dislocation
vis pour T = 300 K et T = 600 K.
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!"

!"#$

!"#%

!"#&

!"#'

!"#(

$"
!)

$"
!(

$"
!'

$"
!&

$"
!%

$"
!$

$"
"

$"
$

$"
%

$"
&

$"
'

?
57
=
@9
4
A
!4
B!
@5
7
C
C
/
2
!D
!7
@4
6
E

F96/!.E1

-2;/

FG&""!H
FG'""!H
FG(""!H
FG)""!H

Figure B.8: Fraction des trajectoires d‘atomes de carbone qui aboutissent dans
le coeur d‘une dislocation coin lors de simulations MCC pour des températures
allant de 300 K à 600 K. Les lignes en pointillé représentent les résultats des
marches aléatoires simples.

cette étude. A cette température, l‘atome de carbone diffuse la plupart du temps

(environ 80% du nombre total de sauts, à T = 300 K) au-dessus du plan de

glissement, où la contrainte de traction normale due à la dislocation coin abaisse

les énergies d‘activation, ce qui accélère la diffusion. Pour la dislocation vis,

l‘effet est inverse: il y a un retard dans le début de la cinétique de diffusion par

rapport à la marche aléatoire simple, clairement observé à T = 300 K. Un tel

retard disparâıt presque à T = 600 K. Par conséquent, la diffusion d‘un atome

de carbone dans le voisinage d‘une dislocation vis, au moins à basse température,

est ralentie en raison de l‘interaction de l‘impureté avec le champ de contraintes

de la dislocation. Comparé à des simulations de marche aléatoire simple, pour

lesquelles 27% des trajectoires des atomes de carbone aboutissent à un cylindre de

rayon 4b par hasard, la fraction des trajectoires de carbone se terminant soit dans

le coeur d‘une dislocation coin ou vis plutôt que de quitter la bôıte de simulation

varie entre 32-34% et entre 30-32%, respectivement. En d‘autres termes, les

dislocations coin et vis ont la capacité d‘attirer les atomes de carbone qui diffusent

à proximité, même si un tel effet, pour les deux types de dislocation, semble être

trop faible à première vue. Comme illustré dans la Fig. B.6, l‘atome de carbone

perçoit différemment l‘influence d‘une dislocation coin au-dessus et en dessous du

plan de glissement, même relativement loin de la ligne de dislocation.
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Figure B.9: Fraction des trajectoires d‘atomes de carbone qui aboutissent dans
le coeur d‘une dislocation coin lors de simulations MCC pour des températures
allant de 300 K à 600 K. Les lignes en pointillé représentent les résultats des
marches aléatoires simples.

B.3 Comparaison entre les simulations atomis-

tiques et la théorie de l‘élasticité anisotrope

Il a été récemment montré que les résultats des calculs d‘élasticité présentent un

bon accord quantitatif entre les énergies de liaison carbone-dislocation obtenus

par simulations atomistiques et la théorie de l‘élasticité anisotrope [Clouet 2008],

à condition que la séparation entre les deux défauts soit supérieure à 2 nm (dislo-

cation coin) et 0,2 nm (dislocation vis). Plus récemment, Hanlumyuang et autres

ont modélisé la distribution du carbone et sa concentration autour des disloca-

tions dans le fer cubique centré à T=300 K et T=400 K avec une combinaison de

calculs DFT et d‘élasticité anisotrope, concluant que les effets de la chimie et du

magnétisme au-delà de ceux déjà reflétés dans les constantes élastiques peuvent

être négligés en toute sécurité [Hanlumyuang 2010].

Dans notre travail, les barrières d‘énergie pour la migration du carbone dans

le coeur de la dislocation obtenues par nos simulations atomistiques ont été

comparées aux prédictions de la théorie de l‘élasticité anisotrope. L‘accord est

meilleur pour les sites octaédrique (qui sont des minima d‘énergie) par rapport

aux sites tétraédriques (qui sont des points-selle). Les différences absolues dans les

barrières d‘énergie obtenues par les deux méthodes sont généralement inférieures

à 5 meV lorsque l‘atome de carbone est situé à des distances supérieures à 1,5
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Figure B.10: Cartographie des différences absolues (erreurs) entre les barrières
d‘énergie obtenues par des simulations atomistiques et les calculs d‘élasticité
anisotrope en fonction de la position de l‘atome de carbone autour d‘une dis-
location coin ou vis (au centre).

nm de la ligne de la dislocation vis et 2 nm (jusqu’à 4 nm, dans le plan de glisse-

ment) de la ligne de la dislocation coin (Figs. 7). Des simulations MCC réalisées

à T=300 K et une analyse supplémentaire des énergies d‘activation obtenues par

chacune des méthodes montrent qu’elles sont globalement en bon accord qual-

itatif, en dépit de certaines differences importantes à proximité du coeur des

dislocations.

Les résultats présentés ici nous permettent d‘envisager un protocole afin

d‘utiliser le MCC pour effectuer des simulations réalistes à l‘échelle atomique

de la ségrégation du carbone aux dislocations et la formation des nuages de Cot-

trell tout en gardant des temps de calcul raisonnables. Ceci peut être réalisé par

le cloisonnement des simulations AKMC en deux parties comme suit:

1. Afin d‘accélérer les simulations MCC, on utilisera un catalogue statique de

barrière dans les situations où les transitions que le système peut subir sont

prévisibles. Ce catalogue sera construit de la manière suivante:

a) les énergies de migration de l‘atome de carbone situé loin de la dislocation,

donc lorsque le champ de déformation nest pas trop important peuvent

être obtenues à partir de calculs d‘élasticité. Ces calculs sont très rapides:

environ un million d‘énergies de liaison carbon-dislocation peuvent être

obtenus en moins d‘une minute sur un ordinateur mono-processeur.

b) à un certain moment, selon la séparation carbone-dislocation (et en fonc-

tion d‘un seuil défini par l‘utilisateur), les simulations atomistiques devront

être employées plutôt que la théorie de l‘élasticité anisotrope pour aug-
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menter la précision du calcul. Le calcul de quelques milliers de barrière

dure habituellement un ou deux mois sur un cluster de taille moyenne avec

les processeurs actuels.

2. On complémentera ce catalogue d‘une approche à la volée pour obtenir les

énergies de point-selle lorsque deux ou plusieurs atomes de carbone seront

censés interagir (près de la dislocation, au sein du nuage, par exemple). Dans

ce cas, une méthode telle que la technique d‘activation-relaxation (ART)

[Barkema 1996] peut être utilisée pour construire la connectivité entre les états

voisins et ensuite la technique de Nudge Elastic Band (NEB) peut être utilisée

pour obtenir les énergies de point-selle. Un exemple de simulation MCC sur-

le-volée (concernant la diffusion de vacance dans le silicium) est présenté par

F. El-Mellouhi et co-travailleurs [El-Mellouhi 2008].

B.4 Diffusion du carbone à l‘intérieur du coeur

des dislocations

La région désordonnée du coeur des dislocations a longtemps été supposée être

un canal par lequel la diffusion a lieu de manière quasi-unidimensionnelle et très

rapidement. Ce type de diffusion dans le coeur joue un rôle aussi important

que la diffusion en volume pour le problème du vieillissement des matériaux.

Par exemple, le voisinage d‘une dislocation est un environnement idéal pour la

nucléation des précipités en raison de la diffusion en volume. Aux dernières étapes

du processus de vieillissement, le coeur lui-même pourrait agir comme une voie

rapide à travers laquelle les impuretés voyagent et se retrouvent à faire grossir

des particules de précipités le long de la ligne de dislocation. Récemment, les

résultats expérimentaux de Legros et co-auteurs [Legros 2008] a fourni une preuve

directe d’une diffusivité elevée dans le coeur d‘un matériau cristallin (dans leur

cas, l’aluminium).

Nous avons réalisé des simulations atomistiques pour obtenir les barrières

d‘énergie dans le coeur d‘une dislocation coin et d‘une dislocation vis. Pour ce

faire, au lieu de supposer que le point-selle correspondait au site tétraédrique,

nous avons effectué des calculs de NEB. Nous avons constaté que le maximum

d‘énergie de liaison entre un atome de carbone et une dislocation est de 0,65

eV (pour la dislocation coin) et 0,41 eV (pour la dislocation vis). Nos calculs

indiquent que les valeurs des barrières d‘énergie, dans le coeur, présentent une

grande variation (voir Fig. B.11). La barrière peut être aussi faible que 0,14 eV
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Figure B.11: Distribution des barrières d‘énergie dans la région définie comme le
coeur (R < 4b ≈ 1 nm) d‘une dislocation coin et d‘une dislocation vis.

dans le coeur d‘une dislocation coin et 0,19 eV dans le coeur d‘une dislocation

vis.

Les simulations MCC effectuées en utilisant ces barrières montrent que la dif-

fusion dans le coeur des dislocations est un processus complexe, où la plupart du

temps l‘atome de carbone se promène dans un sous-ensemble d‘états séparés par

des barrières de basse énergie, et saute éventuellement des barrières d‘énergie plus

élevées afin de diffuser le long de la ligne de dislocation. Ce comportement a été

confirmé par des simulations de dynamique moléculaire. Ce problème de faibles

barrières est bien connu dans la literature [Voter 2002, Puchala 2009] et nous a

empêché de simuler la diffusion de l‘atome de carbone pour des températures

inférieures à 400 K et 750 K dans le coeur d‘une dislocation coin et d‘une disloca-

tion vis, respectivement. Au-dessus de ces températures, le MCC nous a permis

d‘obtenir des trajectoires longues de l’atome de carbone dans le coeur des dislo-

cations. À partir de ces trajectoires, nous avons obtenu le coefficient de diffusion

Dcoeur du carbone dans le coeur et, à partir de la pente de ln(Dcoeur), le facteur

pré-exponentiel D0 et l‘énergie d’activation efficace Em
eff pour la diffusion dans

le coeur (voir Tab. B.1). Nos résultats indiquent que la diffusion dans le coeur

des dislocations est d‘environ deux ordres de grandeur plus grand que la diffusion

dans la matrice.
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D0 (m2/s) Em
eff (eV)

Matrice 1.3 × 10−7 0.816
Coin 9.9 × 10−6 0.670
Vis 1.0 × 10−5 0.738

Table B.1: Le facteur pré-exponentiel et l‘énergie d’activation efficace pour la
diffusion dans la matrice et dans la région définie comme le coeur (R < 4b ≈ 1
nm) d‘une dislocation coin où vis.

B.5 La répartition des atomes de carbone dans

le champ de contraintes des dislocations

Ce travail de thèse nous a permis également de revisiter certains travaux

théoriques classiques sur la distribution des atomes de carbone dans le champ de

contraintes des dislocations dans le fer cubique centré. Nous avons ainsi utilisé les

énergies de liaison carbone-dislocation obtenues par des simulations atomistiques

pour déterminer par la méthode statistique proposée par Louat [Louat 1956] la

concentration d‘atomes de carbone autour des dislocations coin et vis en utilisant

l‘Eq. (B.2). Dans cette equation, ni est l‘occupation d‘un site d‘énergie de liaison

carbone-dislocation Eb
i et n0 est l‘occupation moyenne de la matrice de fer α, où

l‘atome de carbone n‘interagit pas avec avec la dislocation. Il convient de men-

tionner quùne méthode du type Monte Carlo a été utilisée pour déterminer la

concentration de saturation dans le coeur des dislocations, qui a été prise comme

la valeur maximale de ni (0.17 autour d‘une dislocation coin et 0.16 autour d‘une

dislocation vis).

ni =

n0
1 − n0

exp

(
Eb

i
kT

)

1 +
n0

1 − n0
exp

(
Eb

i

kT

) (B.2)

La proximité d‘une dislocation peut être divisée en zones “attractives”, où

Eb > kT (respectivement “répulsives”, où Eb < −kT ), où la probabilité de

trouver un atome de carbone est supérieure (respectivement inférieure) à la con-

centration moyenne de la matrice (voir Fig. B.12). Ces zones se fondent dans les

régions où prédomine la contrainte de cisaillement (c‘est-à-dire tout autour de

la dislocation vis, et à proximité du plan de glissement de la dislocation coin),

puisque deux sites voisins peuvent présenter une alternance d‘énergies de liaison

positives et négatives vers la ligne de dislocation.

En utilisant l‘Eq. (B.2) et en tenant compte de la concentration de saturation,
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Figure B.12: L‘extension et la forme des zones attractives et répulsives autour
d‘une dislocation coin (à gauche) et d‘une dislocation vis (à droite) définis selon
le critère de la Réf. [Cochardt 1955] avec T = 300K et T = 600 K. La ligne
pointillée représente le plan de glissement des dislocations.

144
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Méthode Références Dislocation Extension (nm) NC/l (nm−1)
Sonde atomique [Wilde 2000] Vis 10 × 10 105

Statique moléculaire Ce travail Coin 15 × 6 240
Ce travail Vis 8 × 8 125

Table B.2: Extension et nombre d‘atomes de carbone par unité de longueur de
dislocation, en nm−1, dans la zone correspondant à une atmosphère de Cottrell
(Fe-0.85at% C).

il a été possible de générer des distributions des atomes de carbone dans une

atmosphère de Cottrell autour d‘une dislocation coin et d‘une dislocation vis,

comme indiqué dans la Fig. B.13. Nous avons comparé ces résultats théoriques

aux résultats des expériences de sonde atomique, par example, le travail de Wilde

et co-auteurs [Wilde 2000]. Pendant le vieillissement statique du spécimen ces

auteurs constatent qu‘environ 105 atomes de carbone par nanomètre ont diffusé

vers la dislocation pour former une atmosphère de Cottrell. Cette valeur est

proche de ce que nous avons prévu théoriquement autour d‘une dislocation vis

(125 C/nm), et moins de la moitié du nombre d‘atomes de carbone qui sont

attendus dans le champ de contraintes d‘une dislocation coin (240 C/nm) (voir

Tab. B.2).

Une des perspectives de ce travail est la détermination de la force d‘ancrage

de ces atmosphères. Pour cela, on pourrait générer par notre méthode des con-

centrations de carbone différentes, chacune représentant une étape de formation

de l‘atmosphère de Cottrell au cours du vieillissement statique (de la première

arrivée des interstitiels jusqu’à l‘achèvement de l‘atmosphère), et déterminer en-

suite la force nécessaire pour décrocher la dislocation par dynamique moléculaire

en appliquant une contrainte extérieure de cisaillement.
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Figure B.13: Cartographie de l‘occupation fractionnelle des sites interstitiels au-
tour d‘une dislocation coin (à gauche) et d‘une dislocation vis (à droite) avec
T = 300 K et T = 600 K pour Fe-0.18at%C, comme dans les Réfs. [Miller 2003,
Miller 2006].
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