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Effect of the stress field of an edge dislocation on carbon diffusion in a-iron: Coupling molecular
statics and atomistic Kinetic Monte Carlo
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Carbon diffusion near the core of a [111](101) edge dislocation in a-iron has been investigated by means of
an atomistic model that brings together molecular statics and atomistic kinetic Monte Carlo (AKMC). Mo-
lecular statics simulations with a recently developed embedded atom method potential have been carried out in
order to obtain atomic configurations, carbon-dislocation binding energies, and the activation energies required
for carbon hops in the neighborhood of the line defect. Using information gathered from molecular statics,
on-lattice AKMC simulations have been performed for temperatures in the 300—600 K range, so as to study the
behavior of a carbon atom as it interacts with the edge dislocation stress field. This model can be seen as a very
first step toward the modeling of the kinetics of carbon Cottrell atmosphere formation in iron during the static

aging process.
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I. INTRODUCTION

The concept of “atmospheres” (tiny clouds of interstitial
impurities that might be found decorating dislocations in
crystals) was introduced by Cottrell and Bilby in late 1940s.!
According to their theory, during the static aging process,
carbon atoms in solid solution in an iron matrix diffuse to
dislocations because the strain energy is lowered thereby,
thus forming what was later called a carbon Cottrell atmo-
sphere. Since they were predicted to pin dislocations, which
requires the application of a larger external stress to make
them move, Cottrell atmospheres were pointed out as the
cause for loss in metal plasticity. Important consequences of
dislocation pinning by Cottrell atmospheres, embrittlement,
and nonuniform yielding (Liiders bands) may end up being a
serious hindrance to manufacture of steel and other metallic
alloys. Therefore, formation of Cottrell atmospheres still re-
mains a timely subject in metalurgy.

Cottrell and Bilby roughly estimated the binding energy
between an interstitial carbon atom and a dislocation in iron
by considering the elastic interaction of the pressure created
by the dislocation with the relaxation volume of carbon.
Thereafter, more refined analytical models were proposed to
overcome the limitations of that pioneering approach, taking
into account not only dilatation but also the shear strain as-
sociated with impurities,” as well as the anisotropy of the
cubic cell.> Nowadays, with growing computer power, per-
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forming large scale numerical simulations that take into con-
sideration the atomistic details of the interaction between
both defects became possible as well,*"'” thus completing the
set of tools available for theoretical modeling.

In recent years, three dimension atom probe techniques
allowed to obtain images of interstitial impurities distributed
around dislocations in metallic alloys,"'~'> providing the
missing experimental evidence of Cottrell atmospheres.
However, in spite of representing a substantial advance in the
experimental side, the actual (i.e., atomic scale) kinetics of
impurity diffusion in the neighborhood of a dislocation re-
mains a challenge for these techniques. Macroscopic mea-
surements, e.g., thermoelectric power, on the other hand,
have been successfully used to assess the long-time segrega-
tion of impurities to dislocations'®!” but they obviously lack
any information at the atomic level. In this context, numeri-
cal modeling might come and fill this gap by offering an
atomistic view of the kinetics of impurity diffusion near and
to dislocations.®?

The aim of the work reported in this article was to model
the behavior of a single interstitial impurity in the neighbor-
hood of a dislocation, where the stress field created by the
line defect was expected to affect at some extent the impurity
diffusion. Given their undisputable technological importance
as the main constituents of steel (the most widely used me-
tallic alloy), carbon and iron have been elected the interstitial
atom and host material candidates of our model, respectively.
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Carbon, in spite of its low solubility in iron, is known to play
an important role in the mechanical properties of steel
through its interaction with lattice defects, e.g., vacancies,
grain boundaries, and, of course, dislocations. Experiments18
and ab initio calculations'®?® reported that carbon in solid
solution should be found occupying an octahedral (o) site in
a-iron. On the other hand, the other interstitial position, the
tetrahedral (t) site, has been seen to be a transition state
according to ab initio calculations.'®?® This draws the gen-
eral mechanism of carbon migration in a body-centered cu-
bic (bce) iron matrix as consisting of jumps from an octahe-
dral site to an adjacent octahedral site passing through a
tetrahedral site at midway. About dislocations, whose mobil-
ity is long believed to give metals the ability of being plas-
tically deformed under stress, there are two basic types,
“screw” and “edge,”?"?? determined by the angle between
the line vector and the Burgers vector (either 0° or 90°, re-
spectively; angles in between refer to “mixed” dislocations,
which exhibit an intermediary character between the two ba-
sic types). In the frame of this work, the edge type has been
chosen to be investigated owing to its stress field that pos-
sesses both normal and shear components.

In a previous work, Tapasa and co-workers performed a
molecular-dynamics (MD) investigation of carbon behavior
right in the core of an edge dislocation in a-iron.® This paper,
in turn, is devoted to the modeling of carbon diffusion in the
moderately strained bulklike surroundings of an edge dislo-
cation (the dislocation core itself has not been considered but
as a trap for carbon) and thus it covers a much wider area.
Molecular dynamics would be, in principle, the most obvious
approach to be used for this task as well. Nonetheless, MD
has serious known limitations. Concerning time scale, just a
few nanoseconds are really feasible with MD since very
short-time steps (typically, 10™'> s) have to be used during
the integration of the equations of motion so as to ensure that
the total energy will be conserved. As a consequence of the
limited time scale, temperatures much higher than the room
temperature are required for MD simulations in solid state,
otherwise it is unlikely to observe any diffusion occurring
during the simulated time. Last but not least, the number of
independent trajectories that can be simulated in a reasonable
amount of CPU time with MD is not large enough to allow a
meaningful statistical treatment. We rather opted then by
coupling two computational approaches, namely, molecular
statics and atomistic kinetic Monte Carlo, which allows to
simulate thousands of trajectories with duration of up to a
few hours at temperatures close to the room temperature (the
typical time scale and temperature range of static aging
experiments!®!7), even with a modest hardware. Such a cou-
pling, detailed further, is the basics of the model presented in
this work.

II. COMPUTATIONAL APPROACH
A. Atomistic kinetic Monte Carlo

The erratic walk of a carbon atom in a bcc iron matrix is
an example of diffusion in solid state. This is one out of
many important physical phenomena that are ruled by rare
events, i.e., discrete transitions that usually take a long time
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(compared to atomic vibrations, which are in the order of
10'* Hz) to occur. Transition state theory (TST) (Refs.
23-25) states that most of the time the system will be found
in the vicinity of a stable state, which is a configuration that
corresponds to a local energy minimum in the potential-
energy surface. A transition occurs when the system per-
forms a jump to another stable state, adjacent to the current
one, surpassing the energy barrier that separates the two
states in a sudden move. As such, the long-time evolution of
this system can be described in terms of a chain of discrete
transitions. Kinetic Monte Carlo (KMC),?%?” which belongs
to the Monte Carlo’s family of algorithms that use random
numbers to solve a broad range of numerical problems, has
been demonstrated to be specially suitable to the study of
this kind of state-to-state dynamics. This is in sharp contrast
with other Monte Carlo algorithms, such as Metropolis,?$%
which are time independent and are used to find configura-
tional free-energy minima only.

Among the available KMC algorithms, on-lattice atomis-
tic KMC (AKMC) is one of the simplest.>” Nonetheless, de-
spite its simplicity, AKMC has been successfully applied to
the study of interstitial diffusion in iron! and thus it was
adopted in this work as well. In typical AKMC, the geometry
of the rigid lattice is usually derived from the actual geom-
etry of the system under study. This is to say that, bearing in
mind the problem of an interstitial atom (carbon) diffusing in
a crystal (bcc iron), every point on the AKMC lattice should
correspond to a site in the crystal that is available to be
occupied by the interstitial atom. Furthermore, all possible
transitions that this kind of system can undergo, as well as
their corresponding probabilities, can be found out just once
and then tabulated into a reusable event catalog, which enor-
mously speeds up AKMC simulations. Concerning the
present model, we have implemented an AKMC code based
on the residence time algorithm derived by Young and
Elcock for the study of vacancy migration in ordered
alloys.?? A brief description of the algorithm is given below.

The central quantity in AKMC is the residence time,
which determines how long the system remains in a given
state before jumping to another one. In order to calculate it,
all transition probabilities associated with such a state must
be known. The probability of occurrence of a transition k
during the infinitesimal time interval df is given by

_ B

Wi =wi =woPydt=wq eXP(k_TH[>dl, (1)
B

where wy is the transition attempt frequency (in the order of
the atomic vibrations, i.e., 10"° Hz), kg is the Boltzmann
constant, 7' is the simulated temperature, and AEij is the
energy barrier (at 7=0 K) to be surpassed in order to the
system escapes the current state i to the adjacent state j.
According to the TST, the energy barrier for the transition
k=i—j is given by the following simple equation:

AEzl‘ij = EiSjP - E;, (2)
where EiSjP is the total energy of the system at the saddle
point (i.e., the transition state) and E; is the total energy of
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FIG. 1. The Kth transition, whose probability per unit of time is
wg, will be selected since its assigned value of s(k) intercepts r,-Z.

the system at the state i. Hence, the residence time 7 is com-
puted as

lnrl

q 3)

r=—
where Q=37 ,w, is the sum of the probabilities of all pos-
sible transitions that the system can undergo from the current
state and r; is a random number between 0 and 1.

As long as 7 has been calculated, it is added to the time
elapsed until then in order to update the total simulated time,
and a transition is selected to make the system advance to the
next state. A quantity s(k)==f_,w, is defined and its value is
assigned to the Kth transition, with K=Z (Z is the total num-
ber of transitions that are allowed from the current state).?3
Then a random number r, between 0 and 1 is generated and
the transition corresponding to the smallest s(k) that is
greater than r,-Z will be the chosen one (see Fig. 1).

An important remark is that the energy barriers are entry
parameters for AKMC and they can be obtained by a number
of methods. Molecular statics was the choice of this work.

B. Molecular statics

Differently from molecular dynamics, which provides the
actual evolution of a system of particles in time by integrat-
ing Newton’s equations of motion, molecular statics com-
prises a set of methods whose aim is to find out spatial con-
figurations that represent local energy minima in the
potential-energy surface. This is to say that molecular statics
allows to obtain the ground state of a system (i.e., system
configurations for 7=0 K). As to what concerns the present
work, molecular statics simulations have been carried out to
obtain relaxed atomic configurations, carbon-dislocation
binding energies, and energy barriers for carbon hops in the
moderately strained surroundings of an edge dislocation in
a-Fe. We used LAMMPS (Ref. 34) with the widely used con-
jugate gradient method® for minimizing the total potential-
energy function. Atomic interactions have been described by
employing the embedded atom method (EAM) as proposed
by Daw and Baskes.? In this method, the total energy of an
assembly of atoms is obtained by the following equation:

i i#j

Eiy= %E P(ry) + E Fi[E P(Vij)] . 4)
i.j

Here ¢(r,»j) is the pairwise interaction between atoms i
and j separated by ry;, F; is the embedding energy of atom i,
and p(r;;) is the electron density induced by atom j at the
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location of atom i. The Becquart-Raulot EAM potential®” has
been used. The description of the Fe-Fe interactions is based
on the well-established Mendelev-Ackland potential®®
whereas the Fe-C part was derived by fitting data from ex-
periments and ab initio calculations. This potential repro-
duces well both the atomic configurations and the minimum-
energy path of a carbon atom in perfect a-iron, with the
octahedral sites as energy minima and the tetrahedral sites as
transition states. The same EAM potential has also been suc-
cessfully used in simulations where a strained «-Fe crystal
was considered.”3!-%

C. Saddle-point search

Finding saddle points is not as trivial as finding energy
minima, even though there are many different methods avail-
able for this purpose.>*> Among these methods, the simplest
one is the Drag method, which is very efficient despite being
suitable only for the study of simple cases, e.g., single-
particle migration in a crystalline lattice. Here we propose a
modification of the traditional Drag method that retains the
same basic idea of the original one: the system is moved
stepwise along a known reaction coordinate, starting from a
known energy minimum, being relaxed on the plane perpen-
dicular to the reaction coordinate. The step size is not fixed
though. The first step that makes the system leave an energy
minimum can be very large (1/3 of the minimum-to-
minimum distance, for instance) and the subsequent ones
should be smaller (we used 1/10 of that distance as a first

guess). At each step, F-dR is calculated, where F is the force

vector and dR is the unit vector that points from the starting
energy minimum to the destination one (i.e., it defines the
reaction coordinate). If the scalar product is less than zero,
the force is trying to bring the system back to the initial
energy minimum and then it has to be dragged in the direc-

tion of dR in order to climb up the potential-energy surface.
On the contrary, if the the scalar product is greater than zero,
then the system overpassed the saddle point and is trying to
reach the other energy minimum. Then the system is brought
back to the previous step, a new step size is defined as half
the current one, and the system is moved again toward the
second energy minimum. This procedure is iteratively ap-
plied until the step size is within an arbitrarily small toler-

ance or, much less likely, the scalar product F-dR becomes
zero (that is, the system is exactly at the saddle point). It is
not possible to draw a minimum-energy path with this
method but, on the other hand, this modification is more
efficient and accurate to find a saddle point than the tradi-
tional Drag method implementation.

III. SIMULATIONS AND RESULTS
A. Energy calculations: Molecular statics
1. Simulation set up

The simulation box for molecular statics comprised
around 200,000 iron atoms arranged in a bcc structure [lat-
tice parameter a,=2.8553 A (Ref. 40)] in the following ori-
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FIG. 2. (Color online) (a) An edge dislocation in a cubic lattice
(chosen for the sake of simplicity in the representation). The dislo-
cation line is found in the locus where the extra half-plane ends and
is represented by the symbol T. (b) Sketch of the cylindrical simu-
lation box with an edge dislocation right in the center (radius
~150 A). The Burgers vector is in the [111] direction and the
dislocation line is in the [121] direction (perpendicular to the plane
of the page). The atomic positions in the inner cylinder were al-
lowed to fully relax during molecular statics simulations whereas
the positions in the outer ring were kept fixed to the values defined
by anisotropic elasticity theory. Periodic boundary conditions were
only applied along the dislocation line.

entation: #,=[111], ﬁyz[l_Ol], and ﬁZ:[lfl]. The geometry
of an edge dislocation is such as if an extra half plane was
inserted in the lattice, with the dislocation line being found in
the locus where the half-plane ends [Fig. 2(a)]. In order to
introduce an edge dislocation in the simulation box, the an-
isotropic elasticity theory of straight-line defects, initially
proposed by Eshelby et al.*! and implemented in the Babel
code,*” has been used to apply to each atom in the iron
matrix a displacement corresponding to the Volterra’s dislo-
cation elastic field. The dislocation line was oriented paral-
lelly to i, and the Burgers vector was l;zao/ 2[111]. The

glide plane was therefore the (101) plane found in the mid-
way between the atomic plane where the extra half plane
terminates and the atomic plane just above it. Figure 2(b)
presents a sketch of the simulation box, where the first thing
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to be noticed is that it is cylindrical (radius =150 A) rather
than cubic, as usual in computer simulations since the dislo-
cation destroys the periodicity of the lattice. Along the dis-
location line (the axis of the cylinder) has been the only
direction where periodic boundary conditions have been
used. Moreover, the simulation box consisted of an inner
cylinder, containing the iron atoms that were allowed to fully
relax, surrounded by an outer ring, around 20 A thick, where
the iron atoms were kept frozen in the positions determined
by anisotropic elasticity theory. The aim of this rigid bound-
ary condition was to avoid spurious relaxation that might
come from free-surface effects, so that the true strain caused
by the edge dislocation was permanently reproduced in the
boundary of the simulation box.

Within this simulation box, one can discern two distinct
regions. The largest one looks like the perfect bulk bee iron
and carbon diffusion in this region is expected to operate
according to the same mechanism (jumps from/to neighbor-
ing o sites). The other region is the dislocation core itself,
where lattice distortion is so high that the bcc symmetry is
not observed anymore. In order to define the dislocation core
region, the centrosymmetry deviation (CSD) parameter*?
was employed.

The CSD parameter is a simple way to measure how a
centrosymmetric crystal, such as bcc iron, is locally distorted
by a defect. In a centrosymmetric crystal, for every atomic
position, there is a first nearest neighbor at 7; and another one
at 7j=—F, so that (7;+7,)*=0. The CSD parameter of an atom
in the matrix is then obtained by summing over all the pairs
of opposite nearest neighbors of such an atom, and it is
straighforward to see that CSD=0 everywhere in a crystal
that is either perfect or under homogeneous deformation (di-
lation or contraction). If a defect is present, on the other
hand, the material suffers a nonelastic deformation and the
equal and opposite relation described above is no longer
valid for all of the nearest-neighbor pairs of the atoms that
are close to the defect. By calculating the CSD parameter,
one can localize the atoms that form the dislocation core.
The CSD mapping in the vicinity of an edge dislocation in
a-iron is shown in Fig. 3. As expected, the CSD becomes
larger as the iron atoms are closer to the dislocation line. Not
very far away though, the CSD parameter rapidly goes close
to zero, which means that typical bcc symmetry is kept al-
most unchanged. The iron atoms in the dislocation core re-
gion have been defined as the ones with a CSD parameter
larger than 0.5 A2,

Both the stable state and the transition state for carbon in
a-Fe correspond to interstitial sites in the host crystal, re-
spectively, the octahedral site and the tetrahedral site. Since
the main purpose of molecular statics in the context of our
model is to obtain energy barriers for carbon jumps (Eq. (5)),
it was necessary first to map all the interstitial sites in the
area of interest, that is, the surroundings of the line defect,
out of the dislocation core (where such a mapping is mean-
ingless), in order to check if they remain energy minima and
saddle points in a moderately strained lattice. In strain-free
bcce iron, an octahedral site is found in the midpoint of every
pair of neighboring iron atoms oriented along one of the
tetragonal distortion axes ([100], [010], or [001]). A tetrahe-
dral site, in turn, is always found in the midpoint of two
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FIG. 3. (Color online) Centro-symmetry deviation mapping in
the vicinity of an edge dislocation in a-Fe: [green (mid gray) balls]
CSD<0.005 A2, [yellow (light gray) balls] 0.005=CSD
<0.05 A2 [blue (dark gray) balls] 0.05=CSD<0.5 A2, and
(white balls) CSD=0.5 AZ2. In the inset, the iron atoms in the dis-
location core (side view), i.e., atoms with a CSD parameter larger
than 0.5 A%

adjacent octahedral sites. Following the convention adopted
by Garruchet and Perez,?! the o sites were, respectively, la-
beled type 1, type 2, or type 3 depending on the Fe-Fe pair
orientation. In the above defined simulation box, all o sites
within a region of radius 100 A around the dislocation line
were mapped. Therefore, there was at least a distance of
30 A (around six times the interatomic potential cutoff)
separating a mapped interstitial position and the rigid layer
depicted in Fig. 2(b). It was then straightforward to map also
the t sites. The t sites were labeled in the same way as the o
sites, so that a t site of type 1 sits on the midpoint between a
type 2 and a type 3 o site (which, as a pair, are oriented along
the [100] direction), and so on. Interstitial positions right in
the dislocation core region have not been considered in this
work.

o1 120 A
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2. Dislocation stress field

Before introducing an interstitial carbon atom, the simu-
lation box has been relaxed by molecular statics. The relaxed
dislocation core was straight (that is, it did not exhibit any
kink), staying in the center of the simulation box. After re-
laxation, except in the vicinity of the dislocation core, the
atomic coordinates did not differ more than a few hundredths
of angstrom from the initial coordinates provided by aniso-
tropic elasticity theory, confirming once again the ability of
this theory to predict atomic positions wherever lattice strain
is moderate. The resulting strain is the source of a long-range
internal stress field, the mapping of the nonzero components
of which is depicted in Fig. 4. As one can see, both normal
and shear stress components are present. Acting parallelly to
the Burgers vector, o,, is the largest component of normal
stress and splits the simulation box into two regions: one
above the glide plane where the stress is positive (tensile)
and other below it where stress is negative (compressive).
The only relevant component of shear stress is o, but it is
remarkable only in the region close to the glide plane. As
there is no important contribution to the stress field along the
z axis (parallel to the dislocation line), o,, o, and o, van-
ishes very quickly out of the dislocation core.

3. Energy minima and saddle-point energies

The simple mechanism accepted so far for carbon diffu-
sion in perfect bce iron yields three possible directions for
carbon jumps: 122 (along the [001] direction), 1 =3 (along
the [010] direction), and 223 (along [100] direction), where
1, 2, and 3 are o-site types. These directions, taking into
consideration the simulation box orientation, are F_iven by the
following unit vectors: 12[100]=(\/§/3,—\5/2, V6/6), o101
=(13/3,0,-\6/3), and digoo;;=(13/3,2/2,V6/6). We have
employed the modified Drag method presented in Sec. II to
search for energy minima and saddle points on the lines
shown in Fig. 5(a), which are oriented along the [100], [010],
and [001] directions and crossed each other right in the dis-
location core.

Stress (GPa)

I 5111—41 11]

FIG. 4. (Color online) The three nonzero (out of the dislocation core) components of the edge dislocation stress field (plot area: 120

X120 Az), as calculated by molecular statics.
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FIG. 5. (Color online) (a) [100], [010], and [001] directions
(taken with respect to the dislocation line) where saddle-point
search with the modified Drag method has been carried out. The
dotted line indicates the glide plane, and the dashed circle (whose
radius is 100 A) encompasses the region where octahedral and tet-
rahedral sites have been mapped. (b) Local energy minima (filled
circles) and saddle points (empty circles) along the [100], [010],
and [001] directions, as obtained with the modified Drag method.
The energy reference is the total energy of the o site in the corre-
sponding line end. The dashed line indicates the position of the
dislocation line.

After defining the search lines as stated in the precedent
paragraph, the simulations with the modified Drag method
have been carried out in the following way. First, all octahe-
dral and tetrahedral sites lying on the lines shown in Fig. 5(a)
have been found. Then, for each line, a carbon atom was
initially placed in the o site located in one of the line ends
(around 80 A away from the dislocation line), full energy
minimization was performed and the atom was dragged to-
ward the first saddle point on the line. During saddle-point
search, only the carbon atom has been constrained, with all
of its degrees of freedom being supressed except on the plane

PHYSICAL REVIEW B 82, 054103 (2010)

— 0.80 (0.005) eV
109 0.79 (0.01) eV
0.78 (0.01) eV
— 0.75(0.02) eV
— 0.68(0.04) eV
50
30
20
10
-10
20
30
-50
o1
-100 i 51]l—>[1 11]

8 3

g 3 882 288 3 8

FIG. 6. (Color online) Mean energy barriers inside the molecu-
lar statics simulation box. The dispersion (standard deviation) about
the mean is in parentheses. The activation energy at 7=0 K in a
nonstrained bcc iron lattice obtained with the with the current EAM

potential is 0.81 eV.

perpendicular to the corresponding search direction. As long
as a saddle point was found, the carbon atom was moved a
small distance along the line and allowed to fully relax in
order to go down to the next energy minimum. This proce-
dure has been repeated up to the carbon arrived to the dislo-
cation core, and then restarted at the opposite line end (see
where the arrows point to in the same picture). Figure 5(b)
presents the energy minima (filled circles) and saddle-point
energies (empty circles) along the three search directions (the
energy reference is the total energy of the o site in the cor-
responding line end). The gaps in the plots in Fig. 5(b) were
due to the modified Drag method not being able to find out a
saddle point by following the respective search direction,
which, not surprisingly, only occurs when the carbon atom
gets close to the dislocation core.

In these simulations, most of times the energy minima and
saddle points have matched the o- and t-site positions distrib-
uted on the search lines, respectively, with minor deviations
near the dislocation core. Based on theses results, we have
assumed that, outside the dislocation core, in the bulklike
region, the o sites remained the stable states for carbon and
the t sites, the saddle points. Regarding the molecular statics
simulations, when initially placed in an o-site, the carbon
atom was allowed to fully relax, while in a t site, it was
allowed to relax only on the plane perpendicular to the line
connecting the two associated o sites. Energy minimization
has been carried out in both cases up to the relative change in
the energy was less than 107'°, a criterion fine enough to
achieve a well converged geometry. It is worthwhile to say
that this mapping of energy minima and saddle-point ener-
gies required more than 160,000 molecular statics simula-
tions, one for each mapped interstitial site. Then, by applying
Eq. (2), all the energy barriers for carbon hops inside the
simulation box have been calculated. The mean energy bar-
riers for different distances from the dislocation line are de-
picted in Fig. 6. As an overall effect, one can see that the
closer to the edge dislocation, the lower the mean energy
barriers for carbon diffusion.
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FIG. 7. (Color online) Mapping of carbon-dislocation binding energies per octahedral site type in the neighborhood of an edge dislocation

(plot area: 120X 120 A2?).

Besides the calculation of energy barriers for AKMC, the
energy minima and saddle-point energies obtained with mo-
lecular statics simulations also allowed to characterize (1) the
strength and range of carbon-dislocation interactions, and (2)
how carbon diffusion is biased due to the presence of the line
defect. These results are summarized below.

4. Carbon-dislocation interactions

Binding energies provide a measure of the type (whether
energetically favorable or not) and strength of the interaction
between two entities in a system at 7=0 K (i.e., a local
energy minimum in the potential-energy surface). The bind-
ing energy between a carbon atom and the edge dislocation
was calculated as follows:

AEb = [Edislo + EC] - [Edislo,C + Eref] . (5)

In this equation, E,, is the total energy of the simulation
box with an edge dislocation and no carbon atom, E is the
total energy of the simulation box with a carbon atom in an o
site (stable position) without dislocation, E;, ¢ is the total
energy of the simulation box with both defects and £, is the
simulation box without any defect.

Figure 7 shows the mapping of the carbon-dislocation
binding energies as a function of carbon position with re-
spect to the dislocation line. Not surprisingly, the most at-
tractive (positive) binding energies are found just above the
dislocation core, in the tensile half whereas just below the
dislocation core the carbon-dislocation interaction has a re-
pulsive character (negative binding energies). One can see
that the binding energies depend not only on the carbon-
dislocation distance but also (and mainly) on the angle with
respect to the glide plane, confirming what pioneering mod-
els predicted a long-time ago.!> Moreover, looking at the
mapping of the edge dislocation stress field in Fig. 4, the
relationship between the nonzero stress components and the
binding energies is clarified. For instance, one can see that
the interaction of a carbon atom in a type 2 o site with the
edge dislocation along the glide plane is almost negligible
(AE’~0 eV) even a few angstrom only away from the line
defect since this interstitial position is quite insensitive to the

shear stress that predominates there. However, it would suf-
fice carbon jumps to a neighboring type 1 or type 3 o site to
be in either a favorable or unfavorable position since these
site types are differently affected by shear.

Considering that thermal energy is available (T>0 K),
one can estimate how far from the dislocation line a carbon
atom still is importantly affected by the presence of the line
defect by verifying whether |AE?| > k,T, where |AE?| is the
absolute value of the carbon-dislocation binding energy (see
Fig. 8). For T=300 K, the region where carbon-dislocation
elastic interaction still beats thermal energy has the shape of
a four-leaf clover and has a maximum width of 145 A and a
maximum height of 100 A. Of course, this region is reduced
as the temperatuture increases, so, taking into account the
temperature range investigated in this work (300-600 K), we
can safely assume that the size of the simulation box we have
used is large enough to handle the relevant interactions be-
tween both defects.

® 300K
o ® 400K
500 K

600 K

o]

M Eul—»n 11]

FIG. 8. (Color online) Region containing sites for which
|AE®|> kgT, for different temperatures. The dotted line indicates the
glide plane, and the dashed circle (whose radius is 100 A) indicates
the boundary of the region of the simulation box where octahedral
and tetrahedral sites have been mapped.

200 A
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FIG. 9. Average vectors (€ in a 20X20 mesh

(Ax=Ay=10 A), for T=300 K. Only the components perpendicu-
lar to the dislocation line are shown, in order to characterize how
carbon diffusion is biased with respect to the line defect. Arrows
have been rescaled to make visualization easier (10 A=a0/2). The
longest the arrow, the strongest the bias on carbon diffusion.

5. Dislocation-induced bias on carbon diffusion

When it diffuses in a perfect bcc iron matrix, a carbon
atom can be seen as a simple random walker: once occupy-
ing an o site, the probability that it jumps to one of the four
neighboring o sites (25%) and the step length (a,/2) are the
same for all possible transitions. On the other hand, if the
lattice is nonhomogeneously strained, as is the case when an
edge dislocation is present, the energy of the different o and
t sites change and, as a consequence, the relative heights of
the energy barriers (and thus, transition probabilities) change
as well. Carbon diffusion is now better described as a biased
random walk (BRW).*+-4¢ In contrast with a simple random
walk (SRW), one can observe a net drift on average in spe-
cific directions in a BRW. A vector € (mean displacement
vector), the aim of which is to provide a measure of this
drift, can be defined as

=E Plﬂj i—j— 2 eXp(
j=1

AEP ).
—‘) Oijs (6)
ksT

where AE{’;J is the energy barrier for the transition i— j,

5HJ is the vector that connects the o site i to j and N=4 is
the number of first nearest neighbors of site i. It is straight-
forward to see that the length of € varies from O (no net
displacement, as is the case for a perfect random walk) up to
around a,/2 (as when the probability of one of the four pos-
sible transitions approaches 100% and the walk is not ran-
dom anymore).

Figure 9 presents the average vectors (€) in a 20X20
mesh (therefore, Ax=Ay=10 A), for T=300 K, and offers
an intuitive picture of the effect of the stress field of the edge
dislocation on carbon diffusion. Only the components per-
pendicular to the dislocation line are shown. As can be seen,
an edge dislocation induces a quite complex bias on carbon
diffusion, depending not only on the proximity with the dis-
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location core but also on the region (compression or tensile).
Above the glide plane, the “wind” clearly leads carbon, with
more or less intensity, directly to the core region. The picture
changes below the glide plane, where the carbon tends to
avoid the dislocation core and is more likely to rather move
toward the glide plane. In the vicinity of the glide plane,
where o, (shear) is the predominant component of the dis-
location stress field, the carbon atom falls into a channel that
on average takes it to the dislocation core.

B. Carbon diffusion in the vicinity of the edge dislocation:
AKMC simulations

1. Simulation set up

The AKMC simulation box was derived from the simula-
tion box used for molecular statics in such a way that every
point on the rigid lattice of the first corresponded to one of
the mapped octahedral sites in the latter. The AKMC lattice
can thus be seen as a network of octahedral sites intercon-
nected by transition states (tetrahedral sites). Starting posi-
tions have been randomly chosen in all AKMC simulations.
Moves on the lattice have been constrained so that carbon
hops have been allowed only between nearest-neighbor sites.
Energy barriers have been calculated by Eq. (2) with the
energy minima and saddle-point energies obtained by mo-
lecular statics simulations. Two end points have been defined
for the AKMC simulations. The first one was the dislocation
core, taken as a single (and special) point on the rigid lattice,

n “absorbing” site. Once there, the carbon atom is consid-
ered trapped and taken out of the simulation.*’ The second
end point was the boundary of the AKMC simulation box, a
cylinder such as the molecular statics one. The lack of peri-
odic boundary conditions in the directions perpendicular to
the dislocation line implied that a carbon atom could be lost
during the course of an AKMC simulation just by leaving the
AKMC simulation box through the open boundary. In such a
case, given the maximum range of effective carbon-
dislocation interaction for the lowest considered temperature
(see Fig. 8), we may actually conclude that these lost carbon
atoms have completely escaped the influence of the disloca-
tion stress field. In other words, close to the boundary of the
simulation box, the edge dislocation did not play any notice-
able role on carbon diffusion anymore.

Temperatures in the 300-600 K range have been simu-
lated by AKMC, yielding a total of 500 000 simulations per
temperature. Every individual AKMC simulation yielded an
independent carbon trajectory in the neighborhood of the
edge dislocation. Carbon concentration was assumed to be
very low, so that carbon-carbon interactions, since very un-
likely, could be safely neglected. For the purpose of high-
lighting the effect of the dislocation-induced bias on carbon
diffusion, some of the results of biased random walk AKMC
have been compared to the ones of simple random walks.
AKMC simulations of SRWs have been performed by con-
sidering that all transitions had the same energy barrier of
0.81 eV everywhere.

2. Carbon diffusivity

Initially, the diffusion coefficient of the carbon atom in a
perfect bec iron lattice has been calculated by applying the
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FIG. 10. Mean diffusion coefficient as a function of volume
(delimited by the radius r, see Eq. (7)) compared to bulk diffusivity.
Considering the whole volume of the AKMC simulation box, the
mean diffusion coefficient tends do the bulk value for all
temperatures.

well-known Einstein’s formula (+?)=6Dt, where {(+?) is the
mean squared displacement, so that we could compare to the
diffusion coefficient in the surroundings of the edge disloca-
tion. However, since the energy barriers change depending
on carbon location in the strained iron lattice, the diffusion
coefficient is not constant anymore. The mean (effective)
carbon diffusivity inside a number of cylindrical volumes—
whose axis corresponded to the edge dislocation line—of
different radii has been calculated as follows:

_ Y
D(r) = pt (7)

where 7and & are, respectively, the mean residence time and
the mean jump distance inside the volume delimited by r.
Only carbon trajectories restricted to the specified volumes
were included in the corresponding averages. The dislocation
core, in turn, was not included.

Arrhenius plots of D for different cylinder radii are shown
in Fig. 10. Inside the cylinder of r=20 A, at T=300 K, D is
around one order of magnitude higher than D,,; (namely, the
diffusion coefficient of carbon in a nonstrained a-Fe lattice).
However, as D seems to vary proportionally to 1//2,
D— D, very quickly. Considering the whole AKMC simu-
lation box (r=100 A), one can see that D~ D, for all the
considered temperatures, thus indicating that the contribution
of the edge dislocation stress field (out of the core) to the

effective diffusivity is negligible.*® Dislocation contribution
to the effective carbon diffusivity should rather come from
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FIG. 11. (Color online) Fraction of total carbon trajectories that
(a) terminated in the core of the edge dislocation or (b) left the
AKMC simulation box through its open boundaries. The dashed
(dotted) line indicates the fraction of trajectories that should arrive
to the dislocation core (simulation box boundary) if bias on carbon
diffusion is not considered.

the diffusivity right in the dislocation core, which can be
many orders of magnitude higher than bulk diffusivity.*

3. Analysis of carbon trajectories

If bias on carbon diffusion is not taken into account, the
edge dislocation has a neutral character with relation to the
interstitial atom. In this case, trapping occurs purely by
chance when the carbon atom falls into the dislocation core
in the course of a SRW. Since Fig. 6 revealed that carbon
diffusion is effectively biased owing to the presence of the
line defect, it is worth knowing if such a bias contributes or
not to favor carbon trapping compared to the SRW case (this
is not clear just by inspection). Figure 11 depicts the fraction
of carbon trajectories that either terminated in the dislocation
core or left the simulation box through its open boundary.
The dashed and dotted lines represent the mean values given
by SRW simulations. As one can see, the amount of trajec-
tories that arrived to the dislocation core in BRW simulations
not only increased compared to the unbiased case but they
became the majority (53-56 % against 46%). Otherwise
stated, the edge dislocation presented a slightly attractive
character.

As also featured in Fig. 9, sharp contrasts are drawn be-
tween bias on carbon diffusion below and above the glide
plane (in the vicinity of which the shear stress o, is signifi-
cative). In the AKMC simulations, the glide plane has been
thus defined as an interface separating the two diffusion re-
gimes of carbon. We verified that it is relatively common a
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FIG. 12. (Color online) (Empty circles) Fraction of dislocation-
trapped carbon trajectories starting in either the tensile or the com-
pressive half. (Filled circles) Fraction of dislocation-trapped carbon
trajectories that arrived to the dislocation core coming from either
the tensile or the compressive half.

carbon trajectory starting in one half to cross the glide plane
toward the other one. Indeed, at 7=300 K, a trajectory has
crossed the glide plane about 20 times on average (15, in the
SRW simulations). However, instead of going deeply inside
the other half of the simulation box, as has been common in
the SRWs, the carbon atom rather preferred to stay in the
vicinity of the glide plane: in around 44% of the time elapsed
after arriving there, the interstitial atom has been found in-
side a stripe delimited by the third planes above and below
the glide plane.

An interesting point is raised by Fig. 12. At T=300 K, for
instance, 90% of the dislocation-trapped trajectories ap-
proached the dislocation core coming from the tensile half,
even though 40% of these trajectories started in the compres-
sive one. Therefore, a carbon atom diffusing in the compres-
sive half is much more likely to cross the glide plane toward
the tensile half rather than to go directly to the dislocation
core. Moreover, the vicinity of the glide plane actually works
as a channel through which a carbon atom is driven toward
the dislocation core. The amount of carbon trajectories that
arrived to the dislocation core after falling into the shear
stress field was in the 79-82 % range in the BRWs (about
10% more than what was found in the SRWs). On the other
hand, 2/3 of the trajectories that started in the tensile half and
terminated in the dislocation core have not crossed the glide
plane any time, thus indicating that carbon diffused directly
toward the dislocation core.

PHYSICAL REVIEW B 82, 054103 (2010)

From the analysis of the biased random walks, it was also
possible to estimate a capture radius, i.e., a distance from the
dislocation line that delimited a semicircle in the tensile half
inside which almost 100% of the entering carbon trajectories
terminated in the dislocation core. The capture radius is ob-
viously temperature dependent. For 7=300 K, the lowest
temperature of this study, we have found a capture radius of
around 40 A. In turn, for the highest considered tempera-
ture, 600 K, the capture radius was of only 15 A.

4. Blocking the dislocation core

In the AKMC simulations presented just above, there
were no obstacles in the path of the carbon atom, so that
once captured by the dislocation stress field, it diffused to the
dislocation core and was trapped there. A question that may
be posed is: what if the dislocation core was saturated and
thus it could not absorb any new arriving carbon atom? A
hundred of extra AKMC simulations have been carried out in
order to specifically clarify this point. The starting point of
all carbon trajectories has been defined to be the same,
located at around 30 A right above the dislocation core. In
these simulations, performed at 7=300 K, the core has been
blocked to the carbon atom. Prevented from entering the dis-
location core, the carbon atom exhibited a “fly-around-a-
lamp” behavior: in all simulations, the carbon atom first
moved toward the dislocation core, as expected, and then
started to jump around it. In quantitative terms, in more than
70% of the total simulated time, the carbon atom was found
diffusing within a distance of 10 A from the dislocation line.
(The probability reaches 95% if the considered distance is
20 A.) Even after 100 000 steps, no carbon trajectory moved
away and left the simulation box through the open boundary.

IV. CONCLUSIONS

In summary, this paper presented a simple model to in-
vestigate the behavior of a single interstitial impurity (car-
bon) diffusing in the matrix of a bcc metal (iron) strained
owing to the presence of a line defect (edge dislocation). We
employed molecular statics with an EAM potential to obtain
energy barriers in order to feed an atomistic kinetic Monte
Carlo code, used to generate a number of independent trajec-
tories of the interstitial atom. Temperatures in the 300-600 K
range were considered. Carbon diffusion near an edge dislo-
cation is a sort of biased random walk, with location depen-
dent transition probabilities. In the compressive half, the car-
bon atom is repelled by the dislocation core and either it
moves in oblique trajectories toward the glide plane (where it
may be driven by the shear stress to the dislocation core) or
even escapes the influence of the edge dislocation, moving
away from the trap. On the other hand, in the tensile half, the
carbon atom is more likely to diffuse directly toward the
dislocation core. Two diffusion regimes for carbon in the
neighborhood of the edge dislocation can be discerned
thereby.
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