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Abstract – We perform coarse-grained molecular dynamics (CGMD) simulations to study the
homogeneous nucleation of bimodal and unimodal molecular weight distribution polymers with
equivalent average molecular weight. First, a statistical method is proposed to determine the
critical nuclei and thus calculate the free energy barrier of nucleation. From the temperature
dependence of diffusion coefficient, we also determine the activation energy of diffusion. Then
we calculate the nucleation rate and find that it is consistent with the classical nucleation theory
for homogeneous nucleation in semi-crystalline polymers. Compared with unimodal system, the
bimodal system exhibits lower interfacial free energy and consequently lower free energy barrier for
nucleation, while the two systems have similar activation energy for diffusion. This suggests that
the promoted nucleation rate of bimodal molecular weight distribution polymer is a result of the
reduction of interfacial free energy, which is eventually a consequence of chain-folding nucleation
of long chain component.
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Polymer crystallization consists of two stages: homoge-
neous nucleation and crystal growth. Extensive investi-
gations [1–5] have been done on the second stage using
both experimental and simulation techniques. The nucle-
ation rate strongly depends on the free energy barrier of
a critical nucleus, governed by a competition between the
loss in free energy to create the crystalline nuclei, and the
gain in the interfacial free energy of the crystal-melt in-
terface. Before the nucleation stage, an induction period
of a precrystallization assisted by spinodal phase separa-
tion can be observed [6]. Experimental measurements of
polymer crystal-melt surface tension are challenging, and
homogeneous nucleation experiments are quite difficult to
carry out. Only a few experiments [7–9] have been per-
formed in pure droplets with an emulsion of molten poly-
mer, where homogeneous crystallization is monitored by
in situ microscopy or by wide-angle X-ray scattering. Sur-
face tensions then have been obtained by fitting classical
nucleation theory (CNT) to experimental results [9–11].

Analytical theory and molecular simulation provide an
alternative way for obtaining the polymer interfacial free
energies. Self-consistent field theory [12] has been used to
analytically obtain interfacial free energy from the equilib-
rium crystal-melt interface of polyethylene, by assuming
the chain end surface to be a grafted brush of chain folds
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in a self-consistent pressure field. Wedekind et al. [13] and
other researchers [14–16] calculated the size of critical nu-
clei using a mean first-passage time analysis by tracing the
growth of nuclei and assumed in this case the validity of
classical nucleation theory without testing the theory or
the assumptions.

Only a few works [3,17–19] have addressed the nucle-
ation of bimodal polymers, which remains poorly under-
stood compared to unimodal polymers. Qi et al. [18]
showed that the free energy barrier, as well as the critical
nucleus is sensitive to polydispersity. It was also claimed
that blending long chains to a short chain melt could pro-
mote the nucleation rate [3,20], and this effect was at-
tributed to long chains. However, the average molecular
weight was also promoted with blending of long chains. In
ref. [19], a self-seeding method is used to study the nucle-
ation and growth of branched bidisperse semi-crystalline
polymers in order to improve the crystallization morphol-
ogy of the resulting structure.

In this work, coarse-grained molecular dynamics
(CGMD) simulations have been performed to investigate
the homogeneous and isothermal nucleation of bimodal
and unimodal molecular weight distribution (MWD) poly-
mers with equivalent average molecular weight. A statis-
tical approach has been applied for computing the size of
critical nuclei from which both the interfacial free energy
and the free energy barrier for nucleation can be deduced.
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Fig. 1: (a) Thermograms of isothermal treatment of uni- (“S” for single in the legend) and bimodal (“LC” for the presence
of long chains) systems at constant temperatures 2.3, 2.1, 1.9 and T = 1.7εu/kB respectively for a period of 4.0 × 105τu.
(b) and (c): snapshots of bimodal system after 0.5× 105τu of crystallization with isothermal temperatures of 2.3 and 1.9εu/kB ,
respectively, and (d) and (e) at the end of isothermal treatment. Colors in snapshots (b)–(e): blue represents the crystal phase,
red loop segments, orange tie segments, and yellow cilia segments.

After obtaining the activation energy of diffusion, the
nucleation rate has been evaluated with classical nucle-
ation theory and compared to the one directly calculated
from CGMD simulations.

The CNT method has been widely used to describe ho-
mogeneous nucleation. In semi-crystalline polymers, two
types of crystal interfaces with the melt are formed: chain-
end surface and side surface. A cylinder model is often
assumed to describe the shape of nuclei. The free energy
of formation of a cylindrical crystal nucleus is given by
∆G = 2πr2σe + 2πrlσs − πr2l∆Gv, where σs and σe are
the interfacial free energies for respectively the side and
end surfaces of a cylindrical nucleus of radius r and length
l, and which may depend on the temperature, and ∆Gv is
the Gibbs free energy difference per unit volume between
the crystal and melt phases. For deep supercooling, an
approximation for ∆Gv is

∆Gv ≈ ρn∆Hf
T (Tm − T )

T 2
m

, (1)

where ρn is the crystal density, ∆Hf is the melting heat
at the thermodynamic equilibrium melting temperature
Tm [21]. Maximizing ∆G with respect to r and l gives the
free energy barrier ∆G∗,

∆G∗ = 8π
σ2

s (T )σe (T )

∆Gv
2 , (2)

and the critical nucleus size n∗,

n∗ = 16πρn
σ2

s (T )σe (T )

∆Gv
3 . (3)

According to CNT, Kampmann and Wagner [21] intro-
duced the nucleation rate at steady state, leading to the

following expression:

dN

dt

∣∣∣∣
nuclei

= Ae−
Ed

kBT e−
∆G∗
kBT , (4)

where dN/dt|nuclei is the nucleation rate in the number
of nuclei formed per unit volume and per unit time, Ed

the activation energy for chain mobility and A a constant
prefactor, assuming a temperature-independent Zeldovich
factor.

In our semicrystalline CGMD model, polymer chains
consist of a succession of “beads” representing a few
structural units. It is based on two potentials: a
finite-extensible non-linear elastic (FENE) potential which
models intra-chain interactions of bonded beads, and a
Lennard-Jones (LJ) potential which models weak inter-
actions of non-bonded beads. Energy, length, and time
units are given by εu, σu and τu, respectively (with
τu =

√
muσ2

u/εu, where mu is the mass unit). The po-
tential parameters were optimized so that the polymer
chains tend to align and form thermally stable crystal-
lites (for the details please refer to our previous publica-
tions [16,22–24]). The bimodal system consists of 100 long
chains of 500 beads and 500 short chains of 100 beads,
corresponding to 50% of weight fraction of long chain
content and an average molecular weight of 166.7mu.
We have also prepared a unimodal system consisting of
600 chains of 166 beads, which has the same molecular
weight as the bimodal system. The two systems have
been relaxed for a sufficiently long time of 5.0 × 105τu

at T = 4εu/kB , above the thermodynamic equilibrium
melting temperature Tm = 3.1εu/kB , calculated in a pre-
vious work [23], until reaching a state of thermodynam-
ical equilibrium. Then the systems are submitted to a
fast-cooling process (cooling rate: 10−5εu/kB/τu) to the
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target temperatures 2.5, 2.3, 2.2, 2.1, 2.0, 1.9, 1.7 and
1.5εu/kB , respectively. Afterwards, the temperatures of
the systems are maintained constant for the isothermal
treatment, until the crystallization of each system sat-
urates. At 2.5εu/kB , no crystallization was observed.
Figure 1 shows the enthalpies as a function of isothermal
time just after the cooling. We can see that only at tem-
perature 2.3εu/kB the enthalpy shows an incubation time
and then starts to decrease indicating the onset of crystal-
lization, while the crystallization occurs almost instantly
at lower temperatures. At 4.0 × 105τu the enthalpy of all
the systems reaches a plateau, indicating maximum crys-
tallinities. Figure 1(b)–(e) provides snapshots at the early
stage and at the end of crystallization for bimodal system
at temperatures 2.3 and 1.9εu/kB , respectively. Lamellae-
like structures with tapered edge have been obtained at
high temperature of 2.3εu/kB , whereas numerous small
crystallites are detected at lower temperature of 1.9εu/kB .
In fig. 1(b), we can observe crystal nucleation events with
no evidence of a phase separation process within the amor-
phous phase, as in ref. [6].

In the process of isothermal treatment, statistical cal-
culation of the critical size of nucleus n∗ is based on the
increase and decrease of the nucleus size. According to
CNT, the critical size of a nucleus is a point of unstable
equilibrium, with equal probability for a nucleus to either
grow or shrink. In our statistical approach, we calculate
the sizes of all the nuclei growing and shrinking in the
process of isothermal treatment. Assume that a nucleus
at time t contains nt beads, and a nucleus at time t + ∆t
contains nt+∆t beads. If these two nuclei have more than
nt/2 common beads, they are considered as the same nu-
cleus. If the same nucleus is not found at t+∆t, it means
that the size of this nucleus nt+∆t shrinks to zero. Thus,
all the nuclei at time t are compared to those at time
t + ∆t and all the nuclei growing and shrinking are de-
tected. If nt ≤ nt+∆t, it means a growing event occurs,
and the number of growing events G(nt) is increased by
1; otherwise, the number of shrinking events S(nt) is in-
creased by 1. After obtaining a large statistic, the growing
probability of a nucleus, P (n) with size n will be

P (n) =
G (n)

G (n) + S (n)
. (5)

In this way, the probability of growing P (n) as a func-
tion of nucleus size n will be obtained. The critical nucleus
size is deduced for a size n∗ such that P (n∗) = 50%. The
configurations are taken every ∆t = 100τu. The inset in
fig. 2 shows the probability of growing of a nucleus for the
bimodal system at temperature 2.1εu/kB . In this case the
critical nucleus size is 135 beads. Using the mean first
passage method in our previous work [16], the critical size
of a nucleus in the same case was determined to be 129.
The difference is within 5%, which verifies the validity of
our statistical approach. In this way, we have determined
the critical nucleus size of bimodal and unimodal systems
at several temperatures, see fig. 2.

Fig. 2: Critical nucleus size n∗ of bimodal (blue circles) and
unimodal (red squares) system as a function of 1/(T (Tm −
T ))3. Inset: probability of nucleus growing P (n) as a function
of nucleus size A of the bimodal system at temperature T =
2.1εu/kB .

Fig. 3: Interfacial free energy (σ2
sσe) as a function of temper-

ature.

The interfacial free energy σ2
sσe can then be evaluated

as a function of temperature with eqs. (1) and (3). For this
purpose, we use the value of the melting heat ∆Hf that we
have determined in a previous work, (see table II in [23]):
∆Hf = 1.9εu and ρn = 0.30σ−3

u . As observed in fig. 3,
the interfacial free energy of the bimodal system is lower
than that of unimodal system, but both decrease with
temperature, displaying a more pronounced drop when
the temperature increases up to 2.1εu/kB . This decreas-
ing trend is in qualitative agreement with experimental
observation in a polymer melt [25], suggesting that CNT
yields a physically plausible trend. The drop of the inter-
facial free energy with temperature can be explained by
the significant entropy loss arising from the overcrowded
surface. In ref. [16], we showed that the intramolecular
chain-folding mode occurs preferentially for bidisperse sys-
tems with a larger fraction of long chains, while it is almost
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Fig. 4: Diffusion coefficient of bimodal (blue circles) and uni-
modal (red squares) system as a function of 1/T . Lines corre-
spond to linear fit to find the activation energy Ed.

absent in the unimodal system. We found a correlation
between the decreasing behavior of the interfacial free en-
ergy and the increase of the fraction of tight loops with the
weight fraction of long chains. Thus, we can infer that the
enhancement of nucleation is linked to the intramolecular
chain folding. Having obtained the interfacial free energy
σ2

sσe, the free energy barrier ∆G∗ can then be calculated
by eqs. (1) and (2).

Next, in order to determine the activation energy of dif-
fusion, we calculate the mean square displacement (MSD)
of the centers of mass of the chains, 〈r2(t)〉, on a suffi-
ciently long time (more than 30000τu), as described in
Harmandaris et al. [26], for the bimodal and unimodal sys-
tems at several temperatures in the range 1.7–2.5εu/kB .
According to Fick’s law 〈r2(t)〉 = 6Dtv [27], where here
v = 1, we can evaluate the self-diffusion coefficient D
and thus, the activation energy Ed through the Arrhe-
nius law, D = D0 exp(−Ed/kBT ) (see fig. 4). We find
Ed = 14.28εu and Ed = 14.14εu for bimodal and unimodal
system, respectively. This suggests that Ed is not sensitive
to bimodality if the average molecular weight is the same,
and the bimodality dependence of diffusion coefficient is
mainly controlled by the parameter D0. However, the dif-
fusion coefficient of bimodal system is larger than that of
unimodal system, and the difference increases with tem-
perature. We believe that the diffusion coefficient of the
bimodal system is promoted by the short-chain compo-
nent, which increases the mobility of the system.

Finally, thanks to the activation energy Ed and the free
energy barrier ∆G∗, the nucleation rate as a function of
temperature can be evaluated with CNT equation (4) (see
lines in fig. 5). By using CGMD we can also directly cal-
culate the number of nuclei formed per unit volume and
per unit time. For this purpose, we have used a hierar-
chical clustering method to identify the crystal nuclei and
to monitor their size, which we have implemented in a
previous work [23].

Fig. 5: Temperature dependence of the nucleation rate. The
points, blue circles, and red squares for bimodal and unimodal
systems respectively, are directly calculated by molecular dy-
namics simulation. Lines come from CNT.

The nucleation rates directly obtained from our CGMD
simulations are shown in fig. 5 (points). We can see
that the nucleation rate obtained from the simulations
is consistent with that calculated from CNT. Accord-
ing to eq. (4), the temperature dependence of the nucle-
ation rate can be expressed by two exponential factors:
the molecular transport term and the energy barrier
term. It has been shown [28–30] that these two terms
have opposite temperature dependence behavior thereby
producing a bell-shaped curve with a maximum rate at
the crystallization temperature. The effect of temperature
has been widely investigated on the unimodal polymers,
whereas rarely mentioned on bimodal polymers. Interest-
ingly, from fig. 5 it can be observed that the nucleation
rate of the bimodal system is always larger than that of
the unimodal system, indicating that the nucleation rate
is promoted by bimodality. The nucleation rate differ-
ence of bimodal and unimodal systems mainly stems from
the temperature dependence of the size of the critical nu-
clei, which is eventually a result of chain-folding nucleation
of long chain component. Previous works have also sug-
gested an enhanced nucleation rate of bimodal systems.
Umemoto et al. [30] indicated that the fast nucleation
rate of bimodal system is due to intramolecular nucle-
ation mode of long chains in the bimodal system. Song
et al. [3] found that ultra-high molecular weight polyethy-
lene (UHMWPE) could obviously promote the nucleation
rate of high density polyethylene (HDPE), acting as an
effective nucleating agent. Kornfield et al. [31]. have also
shown that the long chains in the blend melt controlled
the formation of oriented nuclei.

In conclusion, we have simulated the nucleation of bi-
modal system and unimodal system with equivalent av-
erage molecular weight. A growing probability method
has been proposed to calculate the critical size of nucleus
over a range of temperatures allowing us to determine the
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interfacial free energy using a cylinder model and thus
the free energy barrier. After obtaining the activation
energy of diffusion from the MSD we could then calcu-
late the nucleation rate by applying CNT. The nucle-
ation rate directly calculated from CGMD is qualitatively
consistent with the physical expectations stemming from
CNT, suggesting that such a simple theory can describe
physically complex phenomena. Compared to unimodal
polymers, the bimodal system exhibits higher nucleation
rate. The simulations and theoretical analysis performed
in this work not only reveal the molecular mechanisms of
nucleation of bimodal and unimodal polymers, but also
generate meaningful methods that can be used for engi-
neering applications.
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